某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標(biāo)價的八折出售,折后價格每滿500元再減100元.如某商品標(biāo)價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實際折扣率.設(shè)某商品標(biāo)價為元,購買該商品得到的實際折扣率為
(Ⅰ)寫出當(dāng)時,關(guān)于的函數(shù)解析式,并求出購買標(biāo)價為1000元商品得到的實際折扣率;
(Ⅱ)對于標(biāo)價在[2500,3500]的商品,顧客購買標(biāo)價為多少元的商品,可得到的實際折扣率低于?

(Ⅰ), 0.7;(Ⅱ).

解析試題分析:(Ⅰ)按折扣率公式計算即可,但要注意分段;(Ⅱ)按折扣率公式計算,解不等式即可.
試題解析:(Ⅰ)∵   ∴ 
當(dāng)時,,即購買標(biāo)價為1000元的商品得到的實際折扣率為0.7.
(Ⅱ)當(dāng)時,.
①當(dāng)時, 解得,∴;
②當(dāng)時, 解得 ∴;
綜上,,
即顧客購買標(biāo)價在間的商品,可得到的實際折扣率低于
考點:函數(shù)的應(yīng)用、分段函數(shù)、解不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)品(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(Ⅰ)若的定義域和值域均是,求實數(shù)的值;
(Ⅱ)若在區(qū)間上是減函數(shù),且對任意的,,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù).
⑴求函數(shù)的解析式;
⑵設(shè)函數(shù),若的兩個實根分別在區(qū)間內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設(shè)g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在R上的奇函數(shù)有最小正周期4,且時,。
(1)求上的解析式;
(2)判斷上的單調(diào)性,并給予證明;
(3)當(dāng)為何值時,關(guān)于方程上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)有兩個生產(chǎn)車間,分別位于邊長是的等邊三角形的頂點處(如圖),現(xiàn)要在邊上的點建一倉庫,某工人每天用叉車將生產(chǎn)原料從倉庫運往車間,同時將成品運回倉庫.已知叉車每天要往返車間5次,往返車間20次,設(shè)叉車每天往返的總路程為.(注:往返一次即先從倉庫到車間再由車間返回倉庫)

(Ⅰ)按下列要求確定函數(shù)關(guān)系式:
①設(shè)長為,將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請你選用(Ⅰ)中一個合適的函數(shù)關(guān)系式,求總路程 的最小值,并指出點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為常數(shù), ,函數(shù)的圖象與坐標(biāo)軸交點處的切線為,函數(shù)的圖象與直線交點處的切線為,且。
(Ⅰ)若對任意的,不等式成立,求實數(shù)的取值范圍.
(Ⅱ)對于函數(shù)公共定義域內(nèi)的任意實數(shù)。我們把 的值稱為兩函數(shù)在處的偏差。求證:函數(shù)在其公共定義域的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若,求證:函數(shù)上的奇函數(shù);
(2)若函數(shù)在區(qū)間上沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案