首項(xiàng)為3,公差為2的等差數(shù)列,為其前k項(xiàng)之和,則

答案:略
解析:

解:,

答案:


提示:

本例可用裂項(xiàng)求和法解決.

形如:的式子,若可分解為的形式,一般可用此法進(jìn)行求解.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為3,公差為2的等差數(shù)列,其前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)證明:
x
1+x
<ln(1+x)<x(x∈R+);
(2)設(shè){an}是首項(xiàng)為3,公差為2的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)倒數(shù)和,Tn=Sn-ln
an
,試證:0<Tn-T4n
3
8n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是首項(xiàng)為19,公差為-2的等差數(shù)列,Sn為{an}的前n項(xiàng)和.
(Ⅰ)求通項(xiàng)an及a2;
(Ⅱ)設(shè)首項(xiàng)為1,公比為3的等比數(shù)列{bn},求數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡陽(yáng)模擬)已知無(wú)窮數(shù)列{an}中,a1,a2,…,an是首項(xiàng)為10,公差為-2的等差數(shù)列;an+1,an+2,…,a2n是首項(xiàng)為
1
2
,公比為
1
2
的等比數(shù)列(m≥3,m∈N*),并對(duì)任意n∈N*,均有an+2n=an成立.
(1)當(dāng)m=12時(shí),求a2012;
(2)若a52=
1
128
,試求m的值;
(3)判斷是否存在m,使S128m+3≥2012成立,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為1、公差為2的等差數(shù)列,對(duì)每一個(gè)k∈N*,在ak與ak+1之間插入2k-1個(gè)2,得到新數(shù)列{bn}.設(shè)Sn、Tn分別是數(shù)列{bn}和{an}的前n項(xiàng)和.

(1)試問(wèn)a10是數(shù)列{bn}的第幾項(xiàng)?

(2)是否存在正整數(shù)m,使Sm=2 008?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

(3)若am是數(shù)列{bn}的第f(m)項(xiàng),試比較Sf(m)與2Tm的大小,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案