已知f(x)滿足f(x+1)=-f(1-x),且當(dāng)x>1時,f(x)=|lg(x-1)|,則f(x)圖象為


  1. A.
  2. B.
  3. C.
  4. D.
D
分析:若f(x)滿足f(x+1)=-f(1-x),則f(x)的圖象關(guān)于點(1,0)中心對稱,再結(jié)合對數(shù)函數(shù)的性質(zhì)不難解決問題.
解答:∵f(x)滿足f(x+1)=-f(1-x),
∴f(x)的圖象關(guān)于點(1,0)中心對稱,
故可排除A、B
又∵當(dāng)x>1時,f(x)=|lg(x-1)|≥0,
故可排除C
故選D
點評:若f(x)滿足f(x+a)=-f(a-x),則f(x)的圖象關(guān)于點(a,0)中心對稱,
若f(x)滿足f(x+a)=f(a-x),則f(x)的圖象關(guān)于直線x=a對稱.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)滿足f(p+q)=f(p)•f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f(x)是一次函數(shù),且f{f(x)]=9x+6,求f(x)的解析式
(2)已知二次函數(shù)f(x)滿足:f(2)=-1,f(-1)=-1.且f(x)的最大值為8,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域為數(shù)學(xué)公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足(x-2)f'(x)>0,若2<a<4則( )
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a
C.f(3)<f(log2a)<f(2a
D.f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步練習(xí)冊答案