已知函數(shù)f(x)=lnx+a,其中a為大于零的常數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
(2)求證:對(duì)于任意的n∈N*,且n>1時(shí),都有l(wèi)nn>++…+恒成立.
(1)(0,1]   (2)見(jiàn)解析
(1)f′(x)=(x>0),
由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≤x在[1,+∞)上恒成立,又因?yàn)楫?dāng)x∈[1,+∞)時(shí),x≥1,
所以a≤1,即a的取值范圍為(0,1].
(2)由(1)知函數(shù)f(x)=lnx+-1在[1,+∞)上為增函數(shù),
當(dāng)n>1時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050830348337.png" style="vertical-align:middle;" />>1,所以f>f(1),
即lnn-ln(n-1)>,對(duì)于n∈N*,且n>1恒成立,
lnn=[lnn-ln(n-1)]+[ln(n-1)-ln(n-2)]+…+[ln3-ln2]+[ln2-ln 1]>++…++,所以對(duì)于n∈N*,且n>1時(shí),lnn>++…+恒成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,記函數(shù)g(x)的最大值與最小值的差為h(a).
(1)求函數(shù)h(a)的解析式;
(2)畫(huà)出函數(shù)y=h(x)的圖象并指出h(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為偶函數(shù).
(1)求的值;
(2)若方程有且只有一個(gè)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知f是有序數(shù)對(duì)集合上的一個(gè)映射,正整數(shù)數(shù)對(duì)在映射f下的象為實(shí)數(shù)z,記作. 對(duì)于任意的正整數(shù),映射由下表給出:








 
__________,使不等式成立的x的集合是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義:若存在常數(shù),使得對(duì)定義域內(nèi)的任意兩個(gè),均有 成立,則稱(chēng)函數(shù)在定義域上滿(mǎn)足利普希茨條件.若函數(shù)滿(mǎn)足利普希茨條件,則常數(shù)的最小值為()
A.4 B.3 C.1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

湛江為建設(shè)國(guó)家衛(wèi)生城市,現(xiàn)計(jì)劃在相距20 km的赤坎區(qū)(記為A)霞山區(qū)(記為B)兩城區(qū)外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠(chǎng),其對(duì)市區(qū)的影響度與所選地 
點(diǎn)到市區(qū)的距離有關(guān),對(duì)赤坎區(qū)和霞山區(qū)的總影響度為兩市區(qū)的影響度之和,記C點(diǎn)到赤坎區(qū)的距離為x km,建在C處的垃圾處理廠(chǎng)對(duì)兩市區(qū)的總影響度為y.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠(chǎng)對(duì)赤坎區(qū)的影響度與所選地點(diǎn)到赤坎區(qū)的距離的平方成反比,比例系數(shù)為4;對(duì)霞山區(qū)的影響度與所選地點(diǎn)到霞山區(qū)的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠(chǎng)建在的中點(diǎn)時(shí),對(duì)兩市區(qū)的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷上是否存在一點(diǎn),使建在此處的垃圾處理廠(chǎng)對(duì)城A和城B的總影響度最小?若存在,求出該點(diǎn)到赤坎區(qū)的距離;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某造紙廠(chǎng)擬建一座底面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示),如果池四周?chē)鷫ㄔ靻蝺r(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/平方米,水池所有墻的厚度忽略不計(jì).

(1)試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià);
(2)若由于地形限制,該池的長(zhǎng)和寬都不能超過(guò)16米,試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的圖像與函數(shù)的圖像所有交點(diǎn)的橫坐標(biāo)之和等于
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某商人如果將進(jìn)貨單價(jià)為8元的商品按每件10元出售時(shí),每天可銷(xiāo)售100件,現(xiàn)在他采用提高售價(jià),減少進(jìn)貨量的辦法增加利潤(rùn).已知這種商品每件銷(xiāo)售價(jià)提高1元,銷(xiāo)售量就要減少10件,如果使得每天所賺的利潤(rùn)最大,那么他將銷(xiāo)售價(jià)每件定為(  )
A.11元B.12元C.13元D.14元

查看答案和解析>>

同步練習(xí)冊(cè)答案