已知橢圓
x22
+y2=1
的左右焦點(diǎn)分別為F1,F(xiàn)2,若過(guò)點(diǎn)P(0,-2)及F1的直線交橢圓于A,B兩點(diǎn),求△ABF2的面積.
分析:根據(jù)題意,算出直線AB方程為y=-2x-2,與橢圓方程消去x得9y2+4y-4=0.設(shè)A(x1,y1)、B(x2,y2),利用根與系數(shù)的關(guān)系結(jié)合配方的方法算出|y1-y2|=
4
10
9
,最后根據(jù)三角形面積公式即可算出△ABF2的面積.
解答:解:由題意,得
∵橢圓
x2
2
+y2=1
的左焦點(diǎn)為F1(-1,0),點(diǎn)P(0,-2)
∴直線PF1的斜率為k=-2,得直線AB方程為y=-2(x+1),化簡(jiǎn)得y=-2x-2
y=-2x-2
x2
2
+
y2
1
=1
消去x,可得9y2+4y-4=0,
設(shè)A(x1,y1)、B(x2,y2),
∴y1+y2=-
4
9
,y1y2=-
4
9

因此,可得|y1-y2|=
(y1+y2)2-4y1y2
=
4
10
9

∵橢圓的焦距為|F1F2|=2
∴△ABF2的面積為S =
1
2
|F1F2|•|y1-y2|=
4
10
9
點(diǎn)評(píng):本題給出直線PF1與橢圓相交于A、B兩點(diǎn),求△ABF2的面積.著重考查了橢圓的簡(jiǎn)單幾何性質(zhì)和直線與橢圓位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x22
+y2=1
的右準(zhǔn)線l與x軸相交于點(diǎn)E,過(guò)橢圓右焦點(diǎn)F的直線與橢圓相交于A、B兩點(diǎn),點(diǎn)C在右準(zhǔn)線l上,且BC∥x軸?求證直線AC經(jīng)過(guò)線段EF的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x22
+y2=1
的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
(I)求過(guò)點(diǎn)O、F,并且與橢圓的左準(zhǔn)線l相切的圓的方程;
(II)設(shè)過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn),并且線段AB的中點(diǎn)在直線x+y=0上,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
2
+y2=1
的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過(guò)點(diǎn)F的直線l交橢圓于A、B兩點(diǎn).
(1)若直線l的傾斜角α=
π
4
,求|AB|;
(2)求弦AB的中點(diǎn)M的軌跡方程;
(3)設(shè)過(guò)點(diǎn)F且不與坐標(biāo)軸垂直的直線交橢圓于A、B兩點(diǎn),
線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x22
+y2=1的左、右焦點(diǎn)為F1、F2,上頂點(diǎn)為A,直線AF1交橢圓于B.如圖所示沿x軸折起,使得平面AF1F2⊥平面BF1F2.點(diǎn)O為坐標(biāo)原點(diǎn).
( I ) 求三棱錐A-F1F2B的體積;
(Ⅱ)圖2中線段BF2上是否存在點(diǎn)M,使得AM⊥OB,若存在,請(qǐng)?jiān)趫D1中指出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐘祥市模擬)如圖,已知橢圓
x2
2
+y2=1
內(nèi)有一點(diǎn)M,過(guò)M作兩條動(dòng)直線AC、BD分別交橢圓于A、C和B、D兩點(diǎn),若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)證明:AC⊥BD;
(2)若M點(diǎn)恰好為橢圓中心O
(i)四邊形ABCD是否存在內(nèi)切圓?若存在,求其內(nèi)切圓方程;若不存在,請(qǐng)說(shuō)明理由.
(ii)求弦AB長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案