直線ax+by=1與圓x2+y2=1相交于A,B兩點(其中a,b是實數(shù)),且△AOB是直角三角形(O是坐標原點),則點P(a,b)與點(0,1)之間距離的最大值為( )
A.+1
B.2
C.
D.-1
【答案】分析:根據(jù)圓的方程找出圓心坐標和半徑,由|OA|=|OB|根據(jù)題意可知△AOB是等腰直角三角形,根據(jù)勾股定理求出|AB|的長度,根據(jù)等腰直角三角形的性質可得圓心到直線的距離等于|AB|的一半,然后利用點到直線的距離公式表示出圓心到直線的距離,兩者相等即可得到a與b的軌跡方程為一個橢圓,由圖形可知點P(a,b)到焦點(0,1)的距離的最大值.
解答:解:由圓x2+y2=1,所以圓心(0,0),半徑為1
所以|OA|=|OB|=1,則△AOB是等腰直角三角形,得到|AB|=
則圓心(0,0)到直線ax+by=1的距離為==,
∴2a2+b2=2,即a2+=1.
因此所求距離為橢圓a2+=1上點P(a,b)到焦點(0,1)的距離,
如圖得到其最大值PF=+1
故選A
點評:此題考查學生靈活點到直線的距離公式化簡求值,綜合運用所學的知識求動點形成的軌跡方程,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•陜西)已知點M(a,b)在圓O:x2+y2=1外,則直線ax+by=1與圓O的位置關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•溫州一模)設A(1,-1),B(0,1),若直線ax+by=1與線AB(包括端點)有公共點,則a2+b2的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)設點A(1,2),B(2,1)如果直線ax+by=1與線段AB有一個公共點,那么a2+b2( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線ax+by=1與圓x2+y2=1相切于第一象限,則實數(shù)
1
a
+
1
b
的最小值是
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•新疆模擬)已知直線ax+by=1與圓x2+y2=4有交點,且交點為“整點”,則滿足條件的有序實數(shù)對(a,b)的個數(shù)為(  )

查看答案和解析>>

同步練習冊答案