圓x2+y2=8內(nèi)有一點P0(-1,2),AB為過點P0且傾斜角為α的弦;
(1)當(dāng)a=
4
時,求AB的長;
(2)當(dāng)弦AB被點P0平分時,求直線AB的方程.
(1)直線AB的斜率k=tan
4
=-1,
∴直線AB的方程為y-2=-(x+1),即x+y-1=0
∵圓心O(0,0)到直線AB的距離d=
|-1|
2
=
2
2

∴弦長|AB|=2
r2-d2
=2
8-
1
2
=
30

(2)∵P0為AB的中點,OA=OB=r,
∴OP0⊥AB
kOP0=
2-0
-1-0
=-2,∴kAB=
1
2

∴直線AB的方程為y-2=
1
2
(x+1),即x-2y+5=0
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=8內(nèi)有一點P0(-1,2),AB為過點P0且傾斜角為α的弦;
(1)當(dāng)a=
4
時,求AB的長;
(2)當(dāng)弦AB被點P0平分時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=8內(nèi)有一點P0 (-1,2),當(dāng)弦AB被P0平分時,直線AB的方程為
x-2y+5=0
x-2y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為原點,圓x2+y2=8內(nèi)有一點P(1,2),AB和CD為過點P的弦.
(1)當(dāng)弦AB被點P平分時,求直線AB的方程;
(2)若
OA
OB
=1
,求直線AB的斜率;
(3)若AB⊥CD,求四邊形ABCD面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=8內(nèi)有一點P(-1,2),弦AB過點P,且傾斜角為α
(1)若 sinα=
45
,求線段AB的長;
(2)若弦AB恰被P平分,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長春模擬)圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P但不與x軸垂直的弦,O為坐標(biāo)原點.則
OA
OB
的取值范圍
[-8,2]
[-8,2]

查看答案和解析>>

同步練習(xí)冊答案