【題目】已知橢圓和直線: ,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點(diǎn),若直線過點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(I);(II)或.
【解析】試題分析:(Ⅰ)根據(jù)橢圓中的 ,以及 ,和點(diǎn)到直線的距離公式計(jì)算求得 ;(Ⅱ)分斜率不存在和斜率存在兩種情況討論,當(dāng)斜率存在時(shí),設(shè)直線為 與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系計(jì)算 ,從而求得斜率 和直線方程.
試題解析:(Ⅰ)由直線,∴,即——①
又由,得,即,又∵,∴——②
將②代入①得,即,∴, , ,
∴所求橢圓方程是;
(Ⅱ)①當(dāng)直線的斜率不存在時(shí),直線方程為,
則直線與橢圓的交點(diǎn)為,又∵,
∴,即以為直徑的圓過點(diǎn);
②當(dāng)直線的斜率存在時(shí),設(shè)直線方程為, , ,
由,得,
由,得或,
∴, ,
∴
∵以為直徑的圓過點(diǎn),∴,即,
由, ,
得,∴,
∴,解得,即;
綜上所述,當(dāng)以為直徑的圓過定點(diǎn)時(shí),直線的方程為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)= ,給出下列命題:
①F(x)=|f(x)|;
②函數(shù)F(x)是偶函數(shù);
③當(dāng)a<0時(shí),若0<m<n<1,則有F(m)﹣F(n)<0成立;
④當(dāng)a>0時(shí),函數(shù)y=F(x)﹣2有4個(gè)零點(diǎn).
其中正確命題的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把b除a的余數(shù)r記為r=abmodb,例如4=9bmod5,如圖所示,若輸入a=209,b=77,則循環(huán)體“r←abmodb”被執(zhí)行了次.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是一個(gè)非空集合, 是定義在上的一個(gè)運(yùn)算.如果同時(shí)滿足下述四個(gè)條件:
(1)對于,都有;
(2)對于,都有;
(3)對于,使得;
(4)對于,使得(注:“”同(iii)中的“”).
則稱關(guān)于運(yùn)算構(gòu)成一個(gè)群.現(xiàn)給出下列集合和運(yùn)算:
①是整數(shù)集合, 為加法;②是奇數(shù)集合, 為乘法;③是平面向量集合, 為數(shù)量積運(yùn)算;④是非零復(fù)數(shù)集合, 為乘法. 其中關(guān)于運(yùn)算構(gòu)成群的序號是___________(將你認(rèn)為正確的序號都寫上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中, ,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù), ,且, .
(1)求數(shù)列和的通項(xiàng)公式;
(2)令,設(shè)數(shù)列的前項(xiàng)和為,求()的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)定義在R上的奇函數(shù),且在(﹣∞,0)上是增函數(shù),又f(2)=0,則不等式xf(x+1)<0的解集為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com