曲線N:的焦點(diǎn)到準(zhǔn)線的距離為。
(1)求曲線N;
(2)過點(diǎn)T(-1,0)作直線與曲線N交于A、B兩點(diǎn),在x軸上是否存在一點(diǎn)E(,0),使得是等邊三角形,若存在,求出;若不存在,請說明理由。
解:(1)曲線N: 3分
(2)依題意知,直線的斜率存在,且不等于0。
設(shè)直線,,,。 (方法二:)
由消y整理,得 ①
由直線和拋物線交于兩點(diǎn),得 即 ②---------- 5分
由韋達(dá)定理,得:。
則線段AB的中點(diǎn)為。 8分
線段的垂直平分線方程為:
令y=0,得,則---------------------------------------10分
為正三角形, 到直線AB的距離d為。--------------11分
又
解得滿足②式-------------13分
此時(shí)。 -----------------------------------------------14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆四川省綿陽市高二上學(xué)期期末教學(xué)質(zhì)量測試數(shù)學(xué)試題 題型:填空題
下列四個(gè)關(guān)于圓錐曲線的命題:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,則動(dòng)點(diǎn)P的軌跡是一條線段;
②從雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離等于它的虛半軸長;
③雙曲線與橢圓有共同的準(zhǔn)線;
④關(guān)于x的方程x2-mx+1=0(m>2)的兩根可分別作為橢圓和雙曲線的離心率.
其中正確的命題是 .(填上你認(rèn)為正確的所有命題序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省泉州一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com