在正方體的頂點(diǎn)中任意選擇4個頂點(diǎn),對于由這4個頂點(diǎn)構(gòu)成的四面體的以下判斷中,所有正確的結(jié)論是    (寫出所有正確結(jié)論的編號)
①能構(gòu)成每個面都是等邊三角形的四面體;
②能構(gòu)成每個面都是直角三角形的四面體;
③能構(gòu)成三個面為全等的等腰直角三角形,一個面為等邊三角形的四面體;
④能構(gòu)成三個面為不都全等的直角三角形,一個面為等邊三角形的四面體.
【答案】分析:畫出正方體的圖形,找出符合①②③④條件的圖形即可.
解答:解:正方體的圖形如圖:
①例如:E-BDG四面體,滿足能構(gòu)成每個面都是等邊三角形的四面體;
②例如:E-ABC四面體,能構(gòu)成每個面都是直角三角形的四面體;
③例如:E-ABD四面體,能構(gòu)成三個面為全等的等腰直角三角形,一個面為等邊三角形的四面體;
④例如:G-ABD四面體,能構(gòu)成三個面為不都全等的直角三角形,一個面為等邊三角形的四面體.
故答案為:①②③④.
點(diǎn)評:本題是基礎(chǔ)題,考查正方體的結(jié)構(gòu)特征,正方體內(nèi)的四面體的形狀,考查空間想象能力,邏輯推理能力,判斷能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、在正方體的頂點(diǎn)中任意選擇4個頂點(diǎn),對于由這4個頂點(diǎn)構(gòu)成的四面體的以下判斷中,所有正確的結(jié)論是
①②③④
(寫出所有正確結(jié)論的編號)
①能構(gòu)成每個面都是等邊三角形的四面體;
②能構(gòu)成每個面都是直角三角形的四面體;
③能構(gòu)成三個面為全等的等腰直角三角形,一個面為等邊三角形的四面體;
④能構(gòu)成三個面為不都全等的直角三角形,一個面為等邊三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、在正方體的頂點(diǎn)中任意選擇4個頂點(diǎn),對于由這4個頂點(diǎn)構(gòu)成的四面體的以下判斷中,所有正確的結(jié)論是
①②③
(寫出所有正確結(jié)論的編號)
①能構(gòu)成每個面都是等邊三角形的四面體;
②能構(gòu)成每個面都是直角三角形的四面體;
③能構(gòu)成三個面為全等的等腰直角三角形,一個面為等邊三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體的頂點(diǎn)中任意選擇4個頂點(diǎn),對于由這4個頂點(diǎn)構(gòu)成的各種幾何形體的以下判斷中,所有正確的結(jié)論個數(shù)是( 。
①能構(gòu)成矩形;
②能構(gòu)成不是矩形的平行四邊形;
③能構(gòu)成每個面都是等邊三角形的四面體;
④能構(gòu)成每個面都是直角三角形的四面體;
⑤能構(gòu)成三個面為全等的等腰直角三角形,一個面為等邊三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省龍巖一中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

在正方體的頂點(diǎn)中任意選擇4個頂點(diǎn),對于由這4個頂點(diǎn)構(gòu)成的各種幾何形體的以下判斷中,所有正確的結(jié)論個數(shù)是( )
①能構(gòu)成矩形;
②能構(gòu)成不是矩形的平行四邊形;
③能構(gòu)成每個面都是等邊三角形的四面體;
④能構(gòu)成每個面都是直角三角形的四面體;
⑤能構(gòu)成三個面為全等的等腰直角三角形,一個面為等邊三角形的四面體.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市微山一中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

在正方體的頂點(diǎn)中任意選擇4個頂點(diǎn),對于由這4個頂點(diǎn)構(gòu)成的各種幾何形體的以下判斷中,所有正確的結(jié)論個數(shù)是( )
①能構(gòu)成矩形;
②能構(gòu)成不是矩形的平行四邊形;
③能構(gòu)成每個面都是等邊三角形的四面體;
④能構(gòu)成每個面都是直角三角形的四面體;
⑤能構(gòu)成三個面為全等的等腰直角三角形,一個面為等邊三角形的四面體.
A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊答案