有對稱中心的曲線叫做有心曲線,顯然圓、橢圓、雙曲線都是有心曲線. 過有心曲線的中心的弦叫有心曲線的直徑,(為研究方便,不妨設(shè)直徑所在直線的斜率存在).
定理:過圓上異于直徑兩端點(diǎn)的任意一點(diǎn)與一條直徑的兩個端點(diǎn)連線,則兩條連線的斜率之積為定值-1.
(Ⅰ)寫出該定理在橢圓中的推廣,并加以證明;
(Ⅱ)寫出該定理在雙曲線中的推廣;你能從上述結(jié)論得到有心圓錐曲線(包括橢圓、雙曲線、圓)的一般性結(jié)論嗎?請寫出你的結(jié)論.
解:(Ⅰ)設(shè)直徑的兩個端點(diǎn)分別為A、B,由橢圓的對稱性可得,A、B關(guān)于中心O(0,0)對稱,所以A、B點(diǎn)的坐標(biāo)分別為A(,B(.
P(上橢圓上任意一點(diǎn),顯然,
因?yàn)锳、B、P三點(diǎn)都在橢圓上,所以有
, ①
, ②.
而,
由①-②得:.
所以該定理在橢圓中的推廣為:過橢圓上異于直徑兩端點(diǎn)的任意一點(diǎn)與一條直徑的兩個端點(diǎn)連線,則兩條連線的斜率之積為定值.
(Ⅱ)在雙曲線中的推廣為:過雙曲線上異于直徑兩端點(diǎn)的任意一點(diǎn)與一條直徑的兩個端點(diǎn)連線,則兩條連線的斜率之積為定值
該定理在有心圓錐曲線中的推廣應(yīng)為:過有心圓錐曲線上異于 直徑兩端點(diǎn)的任意一點(diǎn)與一條直徑的兩個端點(diǎn)連線,則兩條連線的斜率之積為定值-
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
m |
y2 |
n |
x2 |
m |
y2 |
n |
n |
m |
x2 |
m |
y2 |
n |
n |
m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省哈爾濱市高三第三次模擬理科數(shù)學(xué)試題 題型:填空題
有對稱中心的曲線叫做有心曲線,過有心曲線中心的弦叫做有心曲線的直徑。定理:如果圓上異于一條直徑兩個端點(diǎn)的任意一點(diǎn)與這條直徑兩個端點(diǎn)連線的斜率存在,則這兩條直線的斜率乘積為定值-1。寫出該定理在有心曲線中的推廣 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
有對稱中心的曲線叫做有心曲線,過有心曲線中心的弦叫做有心曲線的直徑。定理:如果圓上異于一條直徑兩個端點(diǎn)的任意一點(diǎn)與這條直徑兩個端點(diǎn)連線的斜率存在,則這兩條直線的斜率乘積為定值-1。寫出該定理在有心曲線中的推廣
。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com