以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長(zhǎng)度.已知直線(xiàn)經(jīng)過(guò)點(diǎn)P(1,1),傾斜角.
(1)寫(xiě)出直線(xiàn)的參數(shù)方程;
(2)設(shè)與圓相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.
(1)(2)2
【解析】本題考查了直線(xiàn)的參數(shù)方程、簡(jiǎn)單曲線(xiàn)的極坐標(biāo)方程和直線(xiàn)與圓的位置關(guān)系等知識(shí)點(diǎn),屬于中檔題.請(qǐng)同學(xué)們注意解題過(guò)程中用根與系數(shù)的關(guān)系,設(shè)而不求的思想方法.
(I)設(shè)出直線(xiàn)l上任意一點(diǎn)Q,利用直線(xiàn)斜率的坐標(biāo)公式可得到坐標(biāo)的關(guān)系:(y-1):(x-1)=1:,再令x-1= t,以t為參數(shù),可以得到直線(xiàn)l的參數(shù)方程;
(II)將圓ρ=2化成普通方程,再與直線(xiàn)的參數(shù)方程聯(lián)解,得到一個(gè)關(guān)于t的一元二次方程.再用一元二次方程根與系數(shù)的關(guān)系,結(jié)合兩點(diǎn)的距離公式,可得出P到A、B兩點(diǎn)的距離之積.
解:(I)直線(xiàn)的參數(shù)方程是
---5分
(II)因?yàn)辄c(diǎn)A,B都在直線(xiàn)l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t2,則點(diǎn)A,B的坐標(biāo)分別為.
圓化為直角坐標(biāo)系的方程.
以直線(xiàn)l的參數(shù)方程代入圓的方程整理得到
①
因?yàn)閠1和t2是方程①的解,從而t1t2=-2.
所以|PA|·|PB|= |t1t2|=|-2|=2. -----------------(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
2 |
π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
6 |
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
π |
4 |
2π |
3 |
x2 |
36 |
y2 |
16 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
|
π |
2 |
π |
3 |
1 |
3a+2 |
1 |
3b+2 |
1 |
3c+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
2 |
π |
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com