20.已知P(1,1)為橢圓2x2+y2=4內(nèi)一定點,過P引一條弦,使此弦以P為中點,則弦所在的直線方程2x+y-3=0.

分析 方法一:設A和B點坐標,代入橢圓方程,作差,根據(jù)直線的斜率公式,即可求得直線的斜率,利用點差法即可求得直線AB的方程;
方法二:設A(1+m,1+n),B(1-m,1-n),代入橢圓方程,作差,求得2m+n=0,AB的斜率k=$\frac{n}{m}$=-2,利用點差法即可求得直線AB的方程;

解答 解:方法一:設此弦的端點為A(x1,y1),B(x2,y2).
則2x12+y12=4,2x22+y22=4,相減可得:2(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0.
∵x1+x2=2,y1+y2=2,
∴2(x1-x2)+(y1-y2)=0,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-2,
∴此弦所在的直線方程為y-1=-2(x-1),即2x+y-3=0.
故答案為:2x+y-3=0.
方法二:設以P(1,1)為中點的弦與橢圓交于A(1+m,1+n),B(1-m,1-n),
∴2(1+m)2+(1+n)2=4,2(1-m)2+(1-n)2=4,
兩式相減得:2×2×2m+2×2n=0,則2m+n=0,
則AB的斜率k=$\frac{n}{m}$=-2,
此弦所在的直線方程為y-1=-2(x-1),即2x+y-3=0.
故答案為:2x+y-3=0.

點評 本題考查了橢圓的標準方程及其性質(zhì)、中點坐標公式與斜率計算公式、“點差法”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知關于θ的方程$\sqrt{3}sinθ+cosθ+a=0$在區(qū)間(0,2π)上有兩個不相等的實數(shù)根α、β,則sin(α+β)=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.要從8名男醫(yī)生和7名女醫(yī)生中選5人組成一個醫(yī)療隊,如果其中至少有2名男醫(yī)生和至少有2名女醫(yī)生,則不同的選法種數(shù)為( 。
A.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)B.(C${\;}_{8}^{3}$+C${\;}_{7}^{2}$)+(C${\;}_{7}^{3}$+C${\;}_{8}^{2}$)
C.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$C${\;}_{8}^{2}$D.C${\;}_{8}^{3}$C${\;}_{7}^{2}$+C${\;}_{7}^{3}$+C${\;}_{11}^{1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.某同學根據(jù)“更相減損術(shù)”設計出程序框圖(圖).若輸入a的值為98,b的值為63,則執(zhí)行該程序框圖輸出的結(jié)果為(  )
A.0B.7C.14D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,四棱錐P-ABCD,底面ABCD是邊長為2的菱形,$∠ABC=\frac{π}{3}$,且PA⊥平面ABCD.
(Ⅰ)證明:平面PAC⊥平面PBD;
(Ⅱ)若平面PAB與平面PCD的夾角為$\frac{π}{3}$,試求線段PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x-alnx(a∈R).
(1)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意x∈(1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC,BC=3,AB=$\sqrt{6},∠C=\frac{π}{4}$,則∠A=$\frac{π}{3}或\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在某小學體育素質(zhì)達標運動會上,對10名男生和10名女生在一分鐘跳繩的次數(shù)進行統(tǒng)計,得到如下所示莖葉圖:
(1)已知男生組中數(shù)據(jù)的中位數(shù)為125,女生組數(shù)據(jù)的平均數(shù)為124,求x,y的值;
(2)從一分鐘內(nèi)跳繩次數(shù)不低于110次且不高于120次的學生中任取兩名,求兩名學生中至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的各項均為正數(shù),a1=1,前n項和為Sn,且an+12-nλ2-1=2λSn,λ為正常數(shù).
(1)求數(shù)列{an}的通項公式;
(2)記bn=$\frac{{S}_{n}}{{a}_{n}}$,Cn=$\frac{1}{{S}_{n}}$+$\frac{1}{{S}_{k-n}}$(k,n∈N*,k≥2n+2).
       求證:①bn<bn+1
                 ②Cn>Cn+1

查看答案和解析>>

同步練習冊答案