已知-1≤x+y≤1,1≤x-y≤3,則3x-y的取值范圍是   
【答案】分析:令3x-y=s(x+y)+t(x-y),求得s,t,利用不等式的性質(zhì)可求3x-y的取值范圍.
解答:解:令3x-y=s(x+y)+t(x-y)=(s+t)x+(s-t)y
,
,
又-1≤x+y≤1,…∴①
1≤x-y≤3,
∴2≤2(x-y)≤6…②
∴①+②得1≤3x-y≤7.
故答案為:[1,7]
點評:本題考查簡單線性規(guī)劃問題,可以作圖利用線性規(guī)劃知識解決,也可以用待定系數(shù)法,利用不等式的性質(zhì)解決,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線x+y-1=0與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
相交于A,B兩點,線段AB中點M在直線l:y=
1
2
x
上.
(1)求橢圓的離心率;(2)若橢圓右焦點關(guān)于直線l的對稱點在單位圓x2+y2=1上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-1≤x+y≤1,1≤x-y≤3,則3x-y的取值范圍是
[1,7]
[1,7]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的個數(shù)為 ( 。
①已知-1≤x+y≤1,1≤x-y≤3,則3x-y的范圍是[1,7];
②若不等式2x-1>m(x2-1)對滿足|m|≤2的所有m都成立,則x的范圍是(
7
-1
2
,
3
+1
2
);
③如果正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是[8,+∞)
④a=log 
1
3
2,b=log
1
2
3,c=(
1
3
0.5大小關(guān)系是a>b>c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①已知f(x)+2f(
1
x
)=3x
,則函數(shù)g(x)=f(2x)在(0,1)上有唯一零點;
②對于函數(shù)f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0.則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=x2,g(x)為一次函數(shù),且為增函數(shù),若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函數(shù),且x∈(-∞,0)時,f(x)=x2+2x,求f(x);

(4)某工廠生產(chǎn)一種機器的固定成本為5 000元,且每生產(chǎn)100部,需要增加投入2 500元,對銷售市場進行調(diào)查后得知,市場對此產(chǎn)品的需求量為每年500部,已知銷售收入的函數(shù)為H(x)=500x-x2,其中x是產(chǎn)品售出的數(shù)量,且0≤x≤500.若x為年產(chǎn)量,y表示利潤,求y=f(x)的解析式.

查看答案和解析>>

同步練習冊答案