7.在△ABC中,AC=4,BC=3,AB=5,O為△ABC的內(nèi)心,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中0≤x≤1,0≤y≤1,則動(dòng)點(diǎn)P的軌跡所覆蓋的Q區(qū)域面積為12.

分析 如圖所示,由題意,點(diǎn)P的軌跡所覆蓋的區(qū)域如圖所示,恰好為△ABC面積的2倍,

解答 解:如圖所示,由題意,點(diǎn)P的軌跡所覆蓋的區(qū)域如圖所示,恰好為△ABC面積的2倍,
∵AB=3,AC=4,BC=5,
∴△ABC為直角三角形,面積為6,
因此點(diǎn)P的軌跡所覆蓋的平面區(qū)域的面積為12.
故答案為:12.

點(diǎn)評(píng) 本題考查了平面向量基本定理、直角三角形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若f(x)為偶函數(shù),且在(-∞,0)單調(diào)遞增,則下列關(guān)系式中成立的是( 。
A.f(-$\frac{3}{2}$)<f(-1)<f(2)B.f(-1)<f($\frac{3}{2}$)<f(-1)<f(2)C.f(2)<f(-1)<f(-$\frac{3}{2}$)D.f(-2)<f($\frac{3}{2}$)<f(-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,在正方體ABCD-A1B1C1D1中,E是B1D1的中點(diǎn).求證:
(1)平面A1BD∥平面D1B1C;
(2)平面D1B1C⊥平面C1EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在三棱錐O-ABC中,M,N分別是OA,BC的中點(diǎn),G是三角形ABC的重心,則$\overrightarrow{OG}$=(  )
A.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{4}$$\overrightarrow{OC}$B.$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$C.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$D.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓上不同于左右頂點(diǎn)的任意一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且有$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,則橢圓C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在極坐標(biāo)系中,由三條曲線θ=0,θ=$\frac{π}{3}$,ρcosθ+$\sqrt{3}$ρsinθ=1圍成的圖形的面積是( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{8}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列{an}滿足$\frac{ln{a}_{1}}{3}$•$\frac{ln{a}_{2}}{6}$•$\frac{ln{a}_{3}}{9}$•…•$\frac{ln{a}_{n}}{3n}$=$\frac{3n}{2}$(n∈N*),則 a10=( 。
A.e30B.e${\;}^{\frac{100}{3}}$C.e${\;}^{\frac{110}{3}}$D.e40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,已知斜三棱柱ABC一A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,且BA1⊥AC1
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求二面角A-A1B-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x+$\frac{1}{x}$|+|x-$\frac{1}{x}$|.
(Ⅰ)判斷該函數(shù)的奇偶性,并證明你的結(jié)論;
(Ⅱ)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)解析式寫成分段函數(shù)形式(不需過(guò)程),然后在給定的坐標(biāo)系中畫出函數(shù)圖象(不需列表);
(Ⅲ)若函數(shù)f(x)在區(qū)間[a-1,2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案