已知兩點(diǎn)M(-3,0),N(3,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動點(diǎn),滿足|
MN
|•|
MP
|+
MN
MP
=0,則動點(diǎn)P(x,y)到點(diǎn)A(-3,0)的距離的最小值為( 。
A、2B、3C、4D、6
分析:首先利用向量數(shù)量積的運(yùn)算求出拋物線的方程,然后根據(jù)拋物線的定義再將動點(diǎn)P(x,y)到點(diǎn)A(-3,0)的距離轉(zhuǎn)化為原點(diǎn)到
A(-3,0)的距離.
解答:解:設(shè)P(x,y),因?yàn)镸(-3,0),N(3,0),
所以|
MN
|=6
MP
=(x+3,y),
NP
=(x-3,y)

|
MN
|•|
MP
|+
MN
NP
=0
,則6
(x+3)2+y2
+6(x-3)=0
,
化簡整理得y2=-12x,所以點(diǎn)A是拋物線y2=-12x的焦點(diǎn),
所以點(diǎn)P到A的距離的最小值就是原點(diǎn)到A(-3,0)的距離,所以d=3.
故選B.
點(diǎn)評:本題在向量與圓錐曲線交匯處命題,考查了向量的數(shù)量積、曲線方程的求法、拋物線的定義以及等價轉(zhuǎn)化能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(-3,0),N(3,0),若直線上存在點(diǎn)P,使|PM|+|PN|=10,則稱該直線為“A型直線”,給出直線:①x=
253
;②y=2x+3;③y=x+10;④y=-5x+1,其中是“A型直線”的是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(-3,0),N(3,0),若直線上存在點(diǎn)P,使得|PM|+|PN|=10,則稱該直線為“A型直線”.給出下列直線:①x=6;②y=-5;③y=x;④y=2x+1,其中是“A型直線”的是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(-3,0),N(3,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動點(diǎn),滿足|
MN
||
MP
|+
MN
NP
=0
,則動點(diǎn)P(x,y)到兩點(diǎn)M(-3,0),B(-2,3)的距離之和的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(-3,0),N(3,0),點(diǎn)P為坐標(biāo)平面內(nèi)一動點(diǎn),且|
MN
|•|
MP
|+
MN
NP
=0
,則動點(diǎn)P(x,y)到兩點(diǎn)A(-3,0)、B(-2,3)的距離之和的最小值為( 。

查看答案和解析>>

同步練習(xí)冊答案