【題目】已知: , : ().
(1)若, 為假, 為真,求實數(shù)的取值范圍;
(2)若是的充分條件,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)先解二次不等式得出命題p中x的取值范圍,將m=5代入,得到命題q中x的范圍, 為假, 為真,即命題、中一真一假,分類討論真假和假真兩種情況,求出x的取值范圍;(2) 是的充分條件即命題中x的取值范圍構(gòu)成的集合P是命題中x的取值范圍構(gòu)成的集合Q的子集,根據(jù)集合間的關(guān)系列出不等式,求出m的取值范圍.
試題解析:
解不等式,得.
(1)∵,∴命題: ,
又命題、中一真一假,
①若真假,則解得;
②若假真,則解得.
綜上,實數(shù)的取值范圍是.
(2)令, ,
∵是的充分條件,
∴,
∴解得
∴,即實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次運動會中甲、乙兩名射擊運動員決賽中各射擊十次的成績(環(huán))如下:
(1)用莖葉圖表示甲、乙兩個人的成績;
(2)根據(jù)莖葉圖分析甲、乙兩人的成績;
(3)計算兩個樣本的平均數(shù)和標準差,并根據(jù)計算結(jié)果估計哪位運動員的成績比較穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓E的左右頂點分別為A、B,左右焦點分別為、,,直線交橢圓于C、D兩點,與線段及橢圓短軸分別交于兩點(不重合),且.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)若,設(shè)直線的斜率分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標系與參數(shù)方程
在直角坐標系中,已知直線l1: (, ),拋物線C: (t為參數(shù)).以原點為極點, 軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求直線l1 和拋物線C的極坐標方程;
(Ⅱ)若直線l1 和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2,l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若從, , , 四個數(shù)中任取的一個數(shù), 是從, , 三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間上任取的一個數(shù), 是從區(qū)間上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣ ,且f( )=3.
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生每次投籃的命中概率都為.現(xiàn)采用隨機模擬的方法求事件的概率:先由計算器產(chǎn)生0到9之間的整數(shù)值隨機數(shù),制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生如下20組隨機數(shù):989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,據(jù)此統(tǒng)計,該學(xué)生三次投籃中恰有一次命中的概率約為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分15分)如圖,在四棱錐中,平面PAD⊥平面ABCD, ,,E是BD的中點.
(Ⅰ)求證:EC//平面APD;
(Ⅱ)求BP與平面ABCD所成角的正切值;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于函數(shù)(),
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間內(nèi)有且只有一個極值點,試求的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com