9、奇函數(shù)f(x)在區(qū)間[3,5]上是增函數(shù),且最小值為3,則f(x)在區(qū)間[-5,-3]上是(  )
分析:根據(jù)奇函數(shù)的圖象關于原點對稱,由題意可得f(x)在區(qū)間[-5,-3]上是增函數(shù),且最大值為-3.
解答:解:由于奇函數(shù)f(x)在區(qū)間[3,5]上是增函數(shù),且最小值為3,奇函數(shù)的圖象關于原點對稱,
則f(x)在區(qū)間[-5,-3]上是增函數(shù),且最大值為-3,
故選 B.
點評:本題考查奇函數(shù)的單調性、最值和圖象的對稱性,關鍵是利用奇函數(shù)的圖象關于原點對稱.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果奇函數(shù)f(x)在區(qū)間[1,4]上是增函數(shù)且最大值是5,那么f(x)在區(qū)間[-4,-1]上是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[0,2]上單調遞減,若f(m)+f(m-1)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[-2,0]上單調遞減,若f(a)+f(a-1)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設奇函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),且f(-1)=-1.當x∈[-1,1]時,函數(shù)f(x)≤t2-2at+1,對一切a∈[-1,1]恒成立,則實數(shù)t的取值范圍為( 。

查看答案和解析>>

同步練習冊答案