已知數(shù)列{an}的前n項和為Sn,a1=l,Sn=(2n-1)an(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)記Tn=n×al+(a-1)a2+(n-2)a3+…+2×an-1+l×an(n∈N*),求Tn
分析:(1)根據(jù)數(shù)列遞推式,再寫一式,兩式相減,化簡可得數(shù)列{an}是以1為首項,
1
2
為公比的等比數(shù)列;
(2)求得數(shù)列的通項,利用錯位相減法可求數(shù)列的和.
解答:(1)證明:∵Sn=(2n-1)an,∴Sn+1=(2n+1-1)an+1,
兩式相減可得:an+1=(2n+1-1)an+1-(2n-1)an
∴an+1=
1
2
an,
∵a1=l,
∴數(shù)列{an}是以1為首項,
1
2
為公比的等比數(shù)列;
(2)解:由(1)知,an=(
1
2
)n-1

∵Tn=n×al+(n-1)a2+(n-2)a3+…+2×an-1+l×an,
1
2
Tn=n×a2+(n-1)a3+(n-2)a4+…+2×an+l×an+1,
1
2
Tn=n×al-(a2+a3+…+an)-
1
2
an=n-1+
1
2n

Tn=2n-2+
1
2n-1
點評:本題考查數(shù)列遞推式,考查等比數(shù)列的證明,考查數(shù)列的求和,確定數(shù)列的通項是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案