直線xcosα-y+1=0的傾斜角的取值范圍是( 。
A、[
π
4
4
]
B、[0,
π
4
]∪[
4
,π)
C、[-
π
4
,
π
4
]
D、[
π
4
π
2
)∪(
π
2
,
4
]
考點:直線的傾斜角
專題:直線與圓
分析:設(shè)直線xcosα-y+1=0的傾斜角為θ,可得:tanθ=cosα,由于cos∈[-1,1].可得-1≤tanθ≤1.即可得出.
解答: 解:設(shè)直線xcosα-y+1=0的傾斜角為θ,則tanθ=cosα,
∵cos∈[-1,1].
∴-1≤tanθ≤1.
∴θ∈[0,
π
4
]
[
4
,π)

故選:B.
點評:本題考查了直線的傾斜角與斜率的關(guān)系、三角函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對任意x>0,都有a-x-|lnx|≤0成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復(fù)數(shù)z滿足(z-1)(1+2i)=2i(i為虛數(shù)單位),則z的虛部是( 。
A、
2
5
i
B、
2
5
C、
3
5
D、
9
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|
x
1-x
<0|,B={x|lgx≥0},則集合{x|x≤1}等于(  )
A、A∩B
B、A∪B
C、∁U(A∩B)
D、∁U(A∩B)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程
C
x
28
=
C
3x-8
28
的解集為( 。
A、{4}B、{9}
C、∅D、{4,9}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x),當-1<x≤1 時,f(x)=x3 則函數(shù)y=f(x)+log
1
5
|x|的零點的個數(shù)( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,lnx+x-2=0,命題q:?x∈R,2x≥x2,則下列命題中為真命題的是(  )
A、p∧qB、¬p∧q
C、p∧¬qD、¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為復(fù)數(shù)單位,若
1+ai
i
=1+bi(a,b∈R),則a+b=( 。
A、2B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1-2cos2
ωx
2
,1),
b
=(-1,cos(ωx+
π
3
)),ω>0,點A、B為函數(shù)f(x)=
a
b
的相鄰兩個零點,|AB|=π.
(Ⅰ) 求ω的值;
(Ⅱ) 若f(x)=
3
3
,x∈(0,
π
2
),求sinx的值.

查看答案和解析>>

同步練習冊答案