(本題滿分14分)已知、滿足約束條件,

(1)求目標(biāo)函數(shù)的最大值;(2)求目標(biāo)函數(shù)的最小值.

 

【答案】

(1)(2)

【解析】

試題分析:根據(jù)約束條件畫出可行域:                                                 ……6分

(1)把目標(biāo)函數(shù)化為斜截式,當(dāng)截距最大時,最大.  

∴當(dāng)直線經(jīng)過點時,截距最大,即最大,

.                                                              ……10分

(2)把目標(biāo)函數(shù)化為斜截式,當(dāng)截距最大時,最小.

∴當(dāng)直線經(jīng)過點時,截距最大,即最小,

.                                                             ……14分

考點:本小題主要考查可行域的畫法和利用線性規(guī)劃知識求解最值,考查學(xué)生數(shù)形結(jié)合解決問題的能力.

點評:利用線性規(guī)劃知識求解最值,準(zhǔn)確畫出可行域和目標(biāo)函數(shù)是解題的關(guān)鍵.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時滿足.

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對于恒成立,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標(biāo)原點且斜率為的直線相交于、

⑴求的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊答案