在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知sin(A-B)=cosC.
(Ⅰ)求B;
(Ⅱ)若a=3
2
,b=
10
,求c.
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:(Ⅰ)已知等式右邊利用誘導(dǎo)公式化簡(jiǎn),根據(jù)三角形為銳角三角形,即可確定出B的度數(shù);
(Ⅱ)由a,b,以及cosB的值,利用余弦定理求出c的值,檢驗(yàn)即可得到滿足題意c的值.
解答: 解:(Ⅰ)由sin(A-B)=cosC,得sin(A-B)=sin(
π
2
-C),
∵△ABC是銳角三角形,
∴A-B=
π
2
-C,即A-B+C=
π
2
,①
又A+B+C=π,②
由②-①,得B=
π
4
;
(Ⅱ)由余弦定理b2=c2+a2-2cacosB,得(
10
2=c2+(3
2
2-2c×3
2
cos
π
4
,
即c2-6c+8=0,
解得c=2,或c=4,
當(dāng)c=2時(shí),b2+c2-a2=(
10
2+22-(3
2
2=-4<0,
∴b2+c2<a2,此時(shí)A為鈍角,與已知矛盾,
∴c≠2.
則c=4.
點(diǎn)評(píng):此題考查了余弦定理,以及誘導(dǎo)公式,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S14=7a10,a7=2,則a9=(  )
A、-4B、4C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asin(2ωx+
π
6
)+
a
6
+b
,(x∈R,a>0,ω>0)的最小正周期為π,函數(shù)f(x)的最大值是
7
4
,最小值是 
3
4

(1)求ω,a,b的值;
(2)求出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+bx(a,b∈R),g(x)=
1
2
x2-(m+
1
m
)x(m>0),且y=f(x)在點(diǎn)(1,f(1))處的切線方程為x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若函數(shù)h(x)=f(x)+g(x)在區(qū)間(0,2)內(nèi)有且僅有一個(gè)極值點(diǎn),求m的取值范圍;
(Ⅲ)設(shè)M(x,y)(x>m+
1
m
)為兩曲線y=f(x)+c(c∈R),y=g(x)的交點(diǎn),且兩曲線在交點(diǎn)M處的切線分別為l1,l2.若取m=1,試判斷當(dāng)直線l1,l2與x軸圍成等腰三角形時(shí)c值的個(gè)數(shù)并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)求值:
(1)
2cos10°-sin20°
cos20°
;
(2)已知cos(α-
β
2
)=-
1
9
,sin(
α
2
-β)=
2
3
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P(0,
A
2
)是函數(shù)y=Asin(
9
x+φ)(其中A>0,φ∈[0,2π))的圖象與y軸的交點(diǎn),點(diǎn)Q是它與x軸的一個(gè)交點(diǎn),點(diǎn)R是它的一個(gè)最低點(diǎn).
(Ⅰ)求φ的值;
(Ⅱ)若PQ⊥PR,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,BA=BD,AD⊥CD,E、F分別為AC、AD的中點(diǎn).
(Ⅰ)求證:EF∥平面BCD;
(Ⅱ)求證:平面EFB⊥平面ABD;
(Ⅲ)若BC=BD=CD=AD=2,AC=2
2
,求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x+
1
2

(1)求f(x)的最小正周期和最大值及相應(yīng)x的值;
(2)當(dāng)x∈(0,π),求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測(cè)試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于80小于90為二等品,小于80為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利30元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機(jī)抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) [70,75] [75,80) [80,85) [85,90) [90,95) [95,100)
3 7 20 40 20 10
5 15 35 35 7 3
根據(jù)上表統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計(jì)算甲生產(chǎn)一件產(chǎn)品A,給工廠帶來(lái)盈利不小于30元的概率;
(2)若甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A,估計(jì)甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案