【題目】設(shè)集合U=R,A={x|4≤2x<16},B={x|y=lg(x﹣3)}.求:
(1)A∩B
(2)(UA)∪B.
【答案】
(1)解:A={x|4≤2x<16}={x|2≤x<4},
B={x|y=lg(x﹣3)}={x|x>3},
∴A∩B={x|3<x<4}
(2)解:UA={x|x<2或x≥4},
∴(UA)∪B={x|x<2或x>3}
【解析】(1)先解指數(shù)不等式,化簡(jiǎn)A,根據(jù)對(duì)數(shù)的定義域求出集合B,再根據(jù)交集的定義即可求出,(2)求出A的補(bǔ)集,再求出答案即可.
【考點(diǎn)精析】利用交、并、補(bǔ)集的混合運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x≥﹣1},B={x|y=ln(x﹣2},則A∩RB=( )
A.[﹣1,2)
B.[2,+∞)
C.[﹣1,2]
D.[﹣1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·四川)設(shè)向量a=(2,4)與向量b=(x , 6)共線,則實(shí)數(shù)x=( )
A.2
B.3
C.4
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中:
①“x0∈R,x02﹣x0+1≤0”的否定;
②“若x2+x﹣6≥0,則x>2”的否命題;
③命題“若x2﹣5x+6=0,則x=2”的逆否命題;
其中真命題的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考察兩個(gè)變量x和y之間的線性相關(guān)性,甲、乙兩同學(xué)各自獨(dú)立地做100次和150次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為t1和t2 , 已知兩個(gè)人在試驗(yàn)中發(fā)現(xiàn)對(duì)變量x的觀測(cè)值的平均值都是s,對(duì)變量y的觀測(cè)值的平均值都是t,那么下列說(shuō)法正確的是( )
A.t1和t2有交點(diǎn)(s,t)
B.t1和t2相交,但交點(diǎn)不是(s,t)
C.t1和t2必定重合
D.t1和t2必定不重合
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c滿足c<b<a,且ac<0,那么下列關(guān)系式中一定成立的是 .
①ab>ac
②c(b﹣a)<0
③cb2<ab2
④ac(a﹣c)>0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com