已知函數(shù),
(1) 設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(2) 證明: 當(dāng)時(shí),求證:  ;
(3) 設(shè),當(dāng)時(shí),不等式恒成立,求的最大值

(1),
所以
當(dāng)時(shí),;當(dāng)時(shí),
因此,上單調(diào)遞增,在上單調(diào)遞減.
因此,當(dāng)時(shí),取得最大值
(2)當(dāng)時(shí),
由(1)知:當(dāng)時(shí),,即
因此,有
(3)不等式化為
所以對(duì)任意恒成立.
,則,
,

所以函數(shù)上單調(diào)遞增.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bd/d/qrhk61.gif" style="vertical-align:middle;" />,
所以方程上存在唯一實(shí)根,且滿足
當(dāng),即,當(dāng),即
所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.
所以
所以
故整數(shù)的最大值是

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 設(shè)的極小值為,其導(dǎo)函數(shù)的圖像開口向下且經(jīng)過(guò)點(diǎn),.
(Ⅰ)求的解析式;(Ⅱ)方程有唯一實(shí)數(shù)解,求的取值范圍.
(Ⅲ)若對(duì)都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)(1)若函數(shù)處與直線相切;
(1) ①求實(shí)數(shù)的值;      ②求函數(shù)上的最大值;
(2)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
①求函數(shù)的單調(diào)區(qū)間。
②若函數(shù)的圖象在點(diǎn)(2,)處的切線的傾斜角為,對(duì)任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m取值范圍
③求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題15分)已知函數(shù)是奇函數(shù),且圖像在點(diǎn) 為自然對(duì)數(shù)的底數(shù))處的切線斜率為3.
(1)  求實(shí)數(shù)、的值;
(2)  若,且對(duì)任意恒成立,求的最大值;
(3)  當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為實(shí)數(shù)).
(I)若處有極值,求的值;
(II)若上是增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)求上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)上是增函數(shù),在上是減函數(shù),且方程有三個(gè)根,它們分別是
(1)求的值;    (2)求證:        (3)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案