【題目】如圖,四棱錐PABCD的底面ABCD是平行四邊形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分別為線段BC,AD,PD的中點(diǎn).

(1)求證:直線EF⊥平面PAC;

(2)求平面MEF與平面PBC所成二面角的正弦值.

【答案】(1)答案見解析.(2)

【解析】

1)推導(dǎo)出ABAC,EFAB,從而EFAC,由PA⊥底面ABCD,得PAEF,由此能證明EF⊥平面PAC.

2)以AB,AC,AP分別為x,y,z軸,建立空間直角坐標(biāo)系,求體積出平面PBC的一個(gè)法向量,再利用向量法求二面角的正弦值.

1)證明:在平行四邊形ABCD中,

AB=AC,∠BCD=135°,∴ABAC,

EF,M分別為線段BCAD,PD的中點(diǎn).EFAB,

EFAC,

PA⊥底面ABCD,EF底面ABCD,∴PAEF,

PAAC=A,∴EF⊥平面PAC.

2)∵PA⊥底面ABCD,ABAC,∴AP,ABAC兩兩垂直,

如圖所示:

AB,AC,AP分別為x,y,z軸,建立空間直角坐標(biāo)系,

A(00,0)B(2,00),C(02,0),P(0,0,2),D(2,2,0)E(1,10),

=(2,2,0), =(20,﹣2)

設(shè)平面PBC的法向量=(x,yz),

,取x=1,得=(1,1,1)

MPD的中點(diǎn),由(1)知,AC⊥平面MEF,且=(02,0),

|=,

∴平面MEF與平面PBC所成二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Cab0)過點(diǎn)(1),過橢圓C的一個(gè)焦點(diǎn)作與長軸垂直的直線,被橢圓C截得的弦長為1

1)求橢圓C的標(biāo)準(zhǔn)方程

2)已知點(diǎn)P為橢圓C上不同于頂點(diǎn)的一點(diǎn),AB為橢圓C的左,右頂點(diǎn),直線APBP分別與直線x=﹣6交于M,N兩點(diǎn)設(shè)線段MN中點(diǎn)為Q,求的取最小值時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,的中點(diǎn).

1)證明:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,已知.

1)求數(shù)列的通項(xiàng)公式;

2)求證:數(shù)列是等差數(shù)列;

3)設(shè)數(shù)列滿足的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三共有1000位學(xué)生,為了分析某次的數(shù)學(xué)考試成績(jī),采取隨機(jī)抽樣的方法抽取了50位高三學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,得到如圖所示頻數(shù)分布表:

分組

頻數(shù)

3

11

18

12

6

(1)根據(jù)頻數(shù)分布表計(jì)算成績(jī)?cè)?/span>的頻率并計(jì)算這組數(shù)據(jù)的平均值(同組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);

(2)用分層抽樣的方法從成績(jī)?cè)?/span>的學(xué)生中共抽取5人,從這5人中任取2人,求成績(jī)?cè)?/span>中各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線,兩點(diǎn),交曲線,兩點(diǎn),求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)與參數(shù)方程

在直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).在以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系中,曲線 .

(1)當(dāng), 時(shí),判斷直線與曲線的位置關(guān)系;

(2)當(dāng)時(shí),若直線與曲相交于, 兩點(diǎn),設(shè),且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級(jí)有學(xué)生500人,其中男生300人,女生200人。為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),采用分層抽樣的方法,從中抽取了100名學(xué)生,統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按照性別分為男、女兩組,再將兩組的分?jǐn)?shù)分成5組: 分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖。

(I)從樣本分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰為一男一女的概率;

(II)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若.

①當(dāng)時(shí),證明:;

②若有兩個(gè)不相等的零點(diǎn),且,證明:;

2)討論的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案