試問函數(shù)f(x)=x+sinx是否為周期函數(shù)?請證明你的結(jié)論.

答案:
解析:

  解:函數(shù)不是周期函數(shù). 2分

  證明如下:(反證法)

  假設(shè)函數(shù)的一個(gè)周期為,則有成立,

  即對一切實(shí)數(shù)均成立. 3分

  取得, 4分

  此與相矛盾 1分

  所以假設(shè)不成立 1分

  于是可知,函數(shù)不是周期函數(shù) 1分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044

已知函數(shù)f(x)是y=-1(x∈R)的反函數(shù),函數(shù)g(x)的圖象與函數(shù)y=-的圖象關(guān)于y軸對稱,設(shè)F(x)=f(x)+g(x),

(1)求函數(shù)F(x)的解析式及定義域;

(2)試問在函數(shù)F(x)的圖象上是否存在兩個(gè)不同的點(diǎn)A,B,使直線AB恰好與y軸垂直?若存在,求出A,B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年高三數(shù)學(xué)模擬試題分類匯編:函數(shù) 題型:044

在統(tǒng)計(jì)學(xué)中,我們學(xué)習(xí)過方差的概念,其計(jì)算公式為,

并且知道,其中為x1、x2、…、xn的平均值.

類似地,現(xiàn)定義“絕對差”的概念如下:設(shè)有n個(gè)實(shí)數(shù)x1、x2、…、xn,稱函數(shù)g(x)=|x-x1|+|x-x2|+…+|x-xn|為此n個(gè)實(shí)數(shù)的絕對差.

(1)設(shè)有函數(shù)g(x)=|x+1|+|x-1|+|x-2|,試問當(dāng)x為何值時(shí),函數(shù)g(x)取到最小值,并求最小值;

(2)設(shè)有函數(shù)g(x)=|x-x1|+|x-x2|+…+|x+x2|,(x∈R,x1<x2<…<xn∈R),

試問:當(dāng)x為何值時(shí),函數(shù)g(x)取到最小值,并求最小值;

(3)若對各項(xiàng)絕對值前的系數(shù)進(jìn)行變化,試求函數(shù)f(x)=3|x+3|+2|x-1|-4|x-5|(x∈R)的最值;

(4)受(3)的啟發(fā),試對(2)作一個(gè)推廣,給出“加權(quán)絕對差”的定義,并討論該函數(shù)的最值(寫出結(jié)果即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.

(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)PQ,且曲線yf(x)和yg(x)在點(diǎn)PQ處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;

(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆湖南省澧縣一中、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)PQ,且曲線yf(x)和yg(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案