已知向量,設(shè)函數(shù).
(1).求函數(shù)f(x)的最小正周期;
(2).已知a,b,c分別為三角形ABC的內(nèi)角對應(yīng)的三邊長,A為銳角,a=1,,且恰是函數(shù)f(x)在上的最大值,求A,b和三角形ABC的面積.
(1);(2),.

試題分析:本題主要考查平面向量的數(shù)量積、二倍角公式、兩角和的正弦公式、三角函數(shù)、余弦定理、三角形面積等基礎(chǔ)知識(shí),意在考查考生的運(yùn)算求解能力、轉(zhuǎn)化化歸想象能力和數(shù)形結(jié)合能力.第一問,先利用向量的數(shù)量積得到的解析式,利用降冪公式、倍角公式、兩角和的正弦公式化簡表達(dá)式,使之化簡成的形式,利用求函數(shù)的周期;第二問,先將代入得到的范圍,數(shù)形結(jié)合得到的最大值,并求出此時(shí)的角A,在三角形中利用余弦定理得到邊b的值,最后利用求三角形面積.
試題解析:(1)
    4分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043520112419.png" style="vertical-align:middle;" />,所以最小正周期.        6分
(2)由(1)知,當(dāng)時(shí),.
由正弦函數(shù)圖象可知,當(dāng)時(shí),取得最大值,又為銳角
所以.        8分
由余弦定理,所以

經(jīng)檢驗(yàn)均符合題意.        10分
從而當(dāng)時(shí),△的面積;        11分
當(dāng)時(shí),.        12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,角A,BC的對邊分別為a,bc,已知,
bsina+ csin,則C=               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為銳角,       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,,則        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

sin 34°sin 26°-cos 34°cos 26°的值是 (  )
A.B.C.-D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

=( )
A.4B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則= (  )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案