分析 由曲線方程求出拋物線與雙曲線的焦點(diǎn)坐標(biāo),由兩點(diǎn)式寫出過兩個(gè)焦點(diǎn)的直線方程,求出函數(shù)y=$\frac{1}{2p}$x2(p>0)在x取直線與拋物線交點(diǎn)M的橫坐標(biāo)時(shí)的導(dǎo)數(shù)值,由其等于雙曲線漸近線的斜率得到交點(diǎn)橫坐標(biāo)與p的關(guān)系,把M點(diǎn)的坐標(biāo)代入直線方程即可求得p的值.
解答 解:由拋物線C1:y=$\frac{1}{2p}$x2(p>0)得x2=2py(p>0),
所以拋物線的焦點(diǎn)坐標(biāo)為F(0,$\frac{p}{2}$).
由$\frac{{x}^{2}}{3}$-y2=1得a=$\sqrt{3}$,b=1,c=2.
所以雙曲線的右焦點(diǎn)為(2,0).
則拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)的連線所在直線方程為$\frac{y-0}{\frac{p}{2}-0}$=$\frac{x-2}{0-2}$,
即$\frac{p}{2}$x+2y-p=0①.
設(shè)該直線交拋物線于M(x0,$\frac{{{x}_{0}}^{2}}{2p}$),則C1在點(diǎn)M處的切線的斜率為$\frac{{x}_{0}}{p}$.
由題意可知$\frac{{x}_{0}}{p}$=$\frac{\sqrt{3}}{3}$,得x0=$\frac{\sqrt{3}}{3}$p,代入M點(diǎn)得M($\frac{\sqrt{3}}{3}$p,$\frac{p}{6}$)
把M點(diǎn)代入①得:$\frac{\sqrt{3}}{3}{p}^{2}+\frac{2}{3}p-2p=0$.
解得p=$\frac{4\sqrt{3}}{3}$.
故答案為:$\frac{4\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了雙曲線的簡(jiǎn)單幾何性質(zhì),考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,函數(shù)在曲線上某點(diǎn)處的切線的斜率等于函數(shù)在該點(diǎn)處的導(dǎo)數(shù),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\sqrt{x}$ | B. | y=2x | C. | y=sinx | D. | y=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10($\sqrt{3}$-1) | B. | 10($\sqrt{2}$+1) | C. | 10($\sqrt{2}$-1) | D. | 10($\sqrt{3}$+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 三角形 | B. | 四邊形 | C. | 曲邊形 | D. | 五邊形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com