【題目】如圖,已知平面平面為等邊三角形,的中點.

1)求證:平面平面;

2)求直線和平面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)取CE的中點G,連接,通過證明平面得面面垂直;

2)過點BM,連接FM,即為所求線面角,根據(jù)線面位置關(guān)系計算正弦值.

1)證明:取CE的中點G,連接.

FCD的中點,∴.

平面平面ACD,

,∴.

,∴,

∴四邊形為平行四邊形,則.

為等邊三角形,FCD的中點,∴.

平面,平面,∴.

,故平面.

,∴平面.

平面

∴平面平面.

2)不妨設(shè),過點BM,

連接FM,由(1)平面平面,平面

平面平面,所以平面,

所以為所求線面角,

又因為平面平面,所以中,

在直角梯形中,,所以為等腰三角形,

,

所以直線和平面所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的兩條漸近線與拋物線的準線分別交于A,B兩點,O為坐標原點,若,則雙曲線的離心率__________

【答案】

【解析】因為雙曲線的兩條漸近線為 ,拋物線的準線為 ,所以

因此

點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.

型】填空
結(jié)束】
16

【題目】若函數(shù)滿足:對于圖象上任意一點P,在其圖象上總存在點,使得成立,稱函數(shù)特殊對點函數(shù).給出下列五個函數(shù):

; (其中e為自然對數(shù)的底數(shù));

其中是特殊對點函數(shù)的序號是__________(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】3月12日,全國政協(xié)總工會界別小組會議上,人社部副部長湯濤在回應(yīng)委員呼聲時表示無論是從養(yǎng)老金方面,還是從人力資源的合理配置來說,延遲退休是大勢所趨.不過,湯部長也表示,不少職工對于延遲退休有著不同的意見.某高校一社團就是否同意延遲退休的情況隨機采訪了200名市民,并進行了統(tǒng)計,得到如下的列聯(lián)表:

贊同延遲退休

不贊同延遲退休

合計

男性

80

20

100

女性

60

40

100

合計

140

60

200

(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認為對延遲退休的態(tài)度與性別有關(guān);

(2)為了進一步征求對延遲退休的意見和建議,從抽取的200位市民中對不贊同的按照分層抽樣的方法抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少有1人為男性的概率.

附: ,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行道時,應(yīng)當減速慢行;遇行人正在通過人行道,應(yīng)當停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程

(2)預(yù)測該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式: , .

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,且相鄰的兩個最值點的距離為.

1)求函數(shù)的解析式;

2)若將函數(shù)的圖象向左平移1個單位長度后得到函數(shù)的圖象,關(guān)于的不等式上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且, ,則函數(shù)的零點個數(shù)是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某移動支付公司隨機抽取了100名移動支付用戶進行調(diào)查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合計

10

8

7

11

14

50

(1)在每周使用移動支付超過3次的樣本中,按性別用分層抽樣隨機抽取5名用戶.

①求抽取的5名用戶中男、女用戶各多少人;

②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶均為男用戶的概率.

(2)如果認為每周使用移動支付次數(shù)超過3次的用戶“喜歡使用移動支付”,能否在犯錯誤概率不超過0.05的前提下,認為“喜歡使用移動支付”與性別有關(guān)?

附表及公式:

0.50

0.25

0.10

0.05

0.010

0.005

0.001

0.455

1.323

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(n)是定義在N*上的增函數(shù),f(4)=5,且滿足:

①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(mn-1).

(1)求f(1),f(2),f(3)的值;

(2)求f(n)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)設(shè)命題實數(shù)滿足,其中,命題實數(shù)滿足.若的充分不必要條件,求實數(shù)的取值范圍.

(Ⅱ)已知命題方程表示焦點在x軸上雙曲線;命題空間向量,的夾角為銳角,如果命題“”為真,命題“”為假.求的取值范圍;

查看答案和解析>>

同步練習冊答案