設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù),則稱(chēng)函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對(duì)定義域內(nèi)任意x1、x2、x3,…,xn都有(當(dāng)x1=x2=x3=…=xn時(shí)等號(hào)成立),稱(chēng)此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且;
④設(shè)A,B,C是一個(gè)三角形的三個(gè)內(nèi)角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號(hào)是    (寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).
【答案】分析:作圖可知①正確,②不正確.對(duì)于③,如圖,因?yàn)閒(x)上凸函數(shù),則點(diǎn)C在點(diǎn)D的下方,點(diǎn)C的縱坐標(biāo)為,點(diǎn)D的坐標(biāo)為,故.對(duì)于④,因?yàn)閒(x)=sinx在上是凸函數(shù),由琴生不等式知
解答:解:作圖可知①正確,②不正確.
對(duì)于③,如圖,因?yàn)閒(x)上凸函數(shù),則點(diǎn)C在點(diǎn)D的下方,點(diǎn)C的縱坐標(biāo)為
點(diǎn)D的坐標(biāo)為,
于是得,即③正確.
對(duì)于④,因?yàn)閒(x)=sinx在上是凸函數(shù),
由琴生不等式知
,
所以,
當(dāng)A=B=C時(shí),、苷_.
綜上所述,正確命題是①③④.
點(diǎn)評(píng):本題考查命題真假的判斷與應(yīng)用,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的靈活運(yùn)用,挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山一模)設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱(chēng)函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對(duì)定義域內(nèi)任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當(dāng)x1=x2=x3=…=xn時(shí)等號(hào)成立),稱(chēng)此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設(shè)A,B,C是一個(gè)三角形的三個(gè)內(nèi)角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號(hào)是
①③④
①③④
(寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山一模)設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱(chēng)函數(shù)f(x)為上凸函數(shù).現(xiàn)有下列命題:
①f(x)=sinx,x∈[0,π]是上凸函數(shù);
②f(x)=lnx(x>0)是上凸函數(shù);
③二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
④f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ

其中,正確命題的序號(hào)是
①②④
①②④
(寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù)數(shù)學(xué)公式,則稱(chēng)函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對(duì)定義域內(nèi)任意x1、x2、x3,…,xn都有數(shù)學(xué)公式(當(dāng)x1=x2=x3=…=xn時(shí)等號(hào)成立),稱(chēng)此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且數(shù)學(xué)公式;
④設(shè)A,B,C是一個(gè)三角形的三個(gè)內(nèi)角,則sinA+sinB+sinC的最大值是數(shù)學(xué)公式
其中,正確命題的序號(hào)是________(寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省眉山市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù),則稱(chēng)函數(shù)f(x)為上凸函數(shù).現(xiàn)有下列命題:
①f(x)=sinx,x∈[0,π]是上凸函數(shù);
②f(x)=lnx(x>0)是上凸函數(shù);
③二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
④f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且
其中,正確命題的序號(hào)是    (寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案