精英家教網 > 高中數學 > 題目詳情

在各項均為正數的數列中,對任意都有.若,則等于( )

A.256              B.510              C.512              D.1024

 

【答案】

【解析】

試題分析:利用am+n=am?an.求出a12,a3,列出a6,a9的關系,求出a9的值.解:在各項均為正數的數列{an}中,對任意m,n∈N*都有am+n=am?an.所以a12=a6?a6=642,又a6=a3?a3,∴a3=8,∴a12=a9?a3,解得a9= =512.故選C

考點:數列遞推關系式

點評:本題考查數列遞推關系式的應用,注意各項均為正數的數列條件的應用,考查計算能力.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在各項均為正數的數列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(1)證明{an}是等差數列,并求這個數列的通項公式及前n項和的公式;
(2)在平面直角坐標系xoy面上,設點Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點Mn在直線l上,Mn中最高點為Mk,若稱直線l與x軸.直線x=a,x=b所圍成的圖形的面積為直線l在區(qū)間[a,b]上的面積,試求直線l在區(qū)間[x3,xk]上的面積;
(3)若存在圓心在直線l上的圓紙片能覆蓋住點列Mn中任何一個點,求該圓紙片最小面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在各項均為正數的數列{an}中,已知點(an,an+1)(n∈N*)在函數y=2x的圖象上,且a25=8
(1)求證:數列{an}是等比數列,并求出其通項公式;
(2)若數列{bn}的前n項和為Sn,且bn=an+n,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•無為縣模擬)在各項均為正數的數列{an}中,對任意m,n∈N*都有am+n=am•an.若a6=64,則a9等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•朝陽區(qū)一模)在各項均為正數的數列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(Ⅰ)證明{an}是等差數列,并求這個數列的通項公式及前n項和的公式;
(Ⅱ)在XOY平面上,設點列Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點列Mn在直線C上,Mn中最高點為Mk,若稱直線C與x軸、直線x=a、x=b所圍成的圖形的面積為直線C在區(qū)間[a,b]上的面積,試求直線C在區(qū)間[x3,xk]上的面積;
(Ⅲ)是否存在圓心在直線C上的圓,使得點列Mn中任何一個點都在該圓內部?若存在,求出符合題目條件的半徑最小的圓;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•朝陽區(qū)一模)在各項均為正數的數列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(Ⅰ)證明{an}是等差數列,并求這個數列的通項公式及前n項和的公式;
(Ⅱ)在XOY平面上,設點列Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點列Mn在直線C上,Mn中最高點為Mk,若稱直線C與x軸、直線x=a,x=b所圍成的圖形的面積為直線C在區(qū)間[a,b]上的面積,試求直線C在區(qū)間[x3,xk]上的面積.

查看答案和解析>>

同步練習冊答案