【題目】在△ABC中,A、B、C的對邊分別為a,b,c,已知A≠ ,且3sinAcosB+ bsin2A=3sinC.
(I)求a的值;
(Ⅱ)若A= ,求△ABC周長的最大值.

【答案】解:(I)∵3sinAcosB+ bsin2A=3sinC,

∴3sinAcosB+ bsin2A=3sinAcosB+3cosAsinB,

∴bsinAcosA=3cosAsinB,

∴ba=3b,

∴a=3;

(Ⅱ)由正弦定理可得 = = ,

∴b=2 sinB,c=2 sinC

∴△ABC周長=3+2 (sinB+sinC)=3+2 [sin( ﹣C)+sinC]=3+2 sin( +C)

∵0<C< ,

+C<

<sin( +C)≤1,

∴△ABC周長的最大值為3+2


【解析】(1)根據(jù)三角形內(nèi)角和定理將C用A、B表示,然后利用誘導(dǎo)公式、兩角和的正弦公式及二倍角的正弦將等式展開并化簡即可求出a;(2)利用正弦定理將b、c用a、sinA、sinB、sinC表示.
【考點精析】認真審題,首先需要了解二倍角的正弦公式(二倍角的正弦公式:).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)作出函數(shù)y=f(x)在一個周期內(nèi)的圖象,并寫出其單調(diào)遞減區(qū)間;
(2)當(dāng) 時,求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點.

(1)求證:AM∥平面SCD;
(2)求平面SCD與平面SAB所成的二面角的余弦值;
(3)設(shè)點N是直線CD上的動點,MN與平面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù)f(x)=(m2﹣1) 上為增函數(shù);命題q:函數(shù)g(x)=x2﹣2elnx﹣m有零點.
(I)若p∨q為假命題,求實數(shù)m的取值范圍;
(Ⅱ)若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有女子善織,日益功,疾,初日織五尺,今一月織九匹三丈(1匹=40尺,一丈=10尺),問日益幾何?”其意思為:“有一女子擅長織布,每天比前一天更加用功,織布的速度也越來越快,從第二天起,每天比前一天多織相同量的布,第一天織5尺,一月織了九匹三丈,問每天增加多少尺布?”若一個月按31天算,記該女子一個月中的第n天所織布的尺數(shù)為an , 則 的值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要想得到函數(shù) 的圖象,只需將函數(shù)y=sinx的圖象上所有的點( )
A.先向右平移 個單位長度,再將橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變
B.先向右平移 個單位長度,橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變
C.橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,再向右平移 個單位長度
D.橫坐標(biāo)變伸長原來的2倍,縱坐標(biāo)不變,再向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個半徑不等的圓盤疊放在一起(有一軸穿過它們的圓心),兩圓盤上分別有互相垂直的兩條直徑將其分為四個區(qū)域,小圓盤上所寫的實數(shù)分別記為x1 , x2 , x3 , x4 , 大圓盤上所寫的實數(shù)分別記為y1 , y2 , y3 , y4 , 如圖所示.將小圓盤逆時針旋轉(zhuǎn)i(i=1,2,3,4)次,每次轉(zhuǎn)動90° , 記Ti(i=1,2,3,4)為轉(zhuǎn)動i次后各區(qū)域內(nèi)兩數(shù)乘積之和,例如T1=x1y2+x2y3+x3y4+x4y1 . 若x1+x2+x3+x4<0,y1+y2+y3+y4<0,則以下結(jié)論正確的是(
A.T1 , T2 , T3 , T4中至少有一個為正數(shù)
B.T1 , T2 , T3 , T4中至少有一個為負數(shù)
C.T1 , T2 , T3 , T4中至多有一個為正數(shù)
D.T1 , T2 , T3 , T4中至多有一個為負數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx﹣ )(ω>0)的圖象與x軸的相鄰兩個交點的距離為
(1)求w的值;
(2)設(shè)函數(shù)g(x)=f(x)+2cos2x﹣1,求g(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )+2cos2x,將函數(shù)y=f(x)的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個對稱中心是( 。
A.(﹣ ,1)
B.(﹣ ,1)
C.( ,1)
D.( ,0)

查看答案和解析>>

同步練習(xí)冊答案