已知函數(shù)(a∈R).
(Ⅰ) 討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[1,e]的最小值.
【答案】分析:(Ⅰ)求出函數(shù)f(x)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0求出函數(shù)的增區(qū)間,令導(dǎo)數(shù)小于0,求出函數(shù)的減區(qū)間
(Ⅱ)a<0時(shí),用導(dǎo)數(shù)研究函數(shù)f(x)在[1,e]上的單調(diào)性確定出最小值,借助(Ⅰ)的結(jié)論,由于參數(shù)的范圍對函數(shù)的單調(diào)性有影響,故對其分類討論,
解答:解:函數(shù)f(x)的定義域?yàn)椋?,+∞),…(1分)
(Ⅰ),…(4分)
(1)當(dāng)a=0時(shí),f'(x)=x>0,所以f(x)在定義域?yàn)椋?,+∞)上單調(diào)遞增; …(5分)

(2)當(dāng)a>0時(shí),令f'(x)=0,得x1=-2a(舍去),x2=a,
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下:
此時(shí),f(x)在區(qū)間(0,a)單調(diào)遞減,
在區(qū)間(a,+∞)上單調(diào)遞增;          …(7分)

(3)當(dāng)a<0時(shí),令f'(x)=0,得x1=-2a,x2=a(舍去),
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下:
此時(shí),f(x)在區(qū)間(0,-2a)單調(diào)遞減,
在區(qū)間(-2a,+∞)上單調(diào)遞增.…(9分)
(Ⅱ)由(Ⅰ)知當(dāng)a<0時(shí),f(x)在區(qū)間(0,-2a)單調(diào)遞減,在區(qū)間(-2a,+∞)上單調(diào)遞增.…(10分)
(1)當(dāng)-2a≥e,即時(shí),f(x)在區(qū)間[1,e]單調(diào)遞減,
所以,;                     …(11分)
(2)當(dāng)1<-2a<e,即時(shí),f(x)在區(qū)間(1,-2a)單調(diào)遞減,
在區(qū)間(-2a,e)單調(diào)遞增,所以,…(12分)
(3)當(dāng)-2a≤1,即時(shí),f(x)在區(qū)間[1,e]單調(diào)遞增,
所以.…(13分)
點(diǎn)評:本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解題的鍵是理解并掌握函數(shù)的導(dǎo)數(shù)的符號與函數(shù)的單調(diào)性的關(guān)系,此類題一般有兩類題型,一類是利用導(dǎo)數(shù)符號得出單調(diào)性,一類是由單調(diào)性得出導(dǎo)數(shù)的符號,本題屬于第一種類型.本題的第二小問是根據(jù)函數(shù)在閉區(qū)間上的最值,本題中由于參數(shù)的存在,導(dǎo)致導(dǎo)數(shù)的符號不定,故需要對參數(shù)的取值范圍進(jìn)行討論,以確定函數(shù)在這個(gè)區(qū)間上的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省百所重點(diǎn)高中高三(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省常州高級中學(xué)高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),如果在曲線C上存在點(diǎn)M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水一中高一(下)第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最大值;
(2)如果對于區(qū)間上的任意一個(gè)x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省梅州市高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

 

已知函數(shù)  (a∈R).

 (1)若在[1,e]上是增函數(shù),求a的取值范圍; 

(2)若a=1,1≤x≤e,證明:<.

 

查看答案和解析>>

同步練習(xí)冊答案