已知定點(diǎn)A(-2,0),動(dòng)點(diǎn)B是圓F為圓心)上一點(diǎn),線段AB的垂直平分線交BFP.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)是否存在過(guò)點(diǎn)E(0,-4)的直線lP點(diǎn)的軌跡于點(diǎn)R,T,且滿足 (O為原點(diǎn)),若存在,求直線l的方程,若不存在,請(qǐng)說(shuō)明理由.
(1)(2)
(1)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8
∴|PA|+|PF|=8>|AF|
∴P點(diǎn)軌跡為以A、F為焦點(diǎn)的橢圓…………………………3分
設(shè)方程為
………………………5分
(2)假設(shè)存在滿足題意的直線l,其斜率存在,設(shè)為k,設(shè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓W的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,兩條準(zhǔn)線間的距離為6. 橢圓W的左焦點(diǎn)為,過(guò)左準(zhǔn)線與軸的交點(diǎn)任作一條斜率不為零的直線與橢圓W交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();
(Ⅲ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓,)的右焦點(diǎn)與拋物線的焦點(diǎn)相同,離心率為,則此橢圓的方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若過(guò)點(diǎn)作直線與拋物線有且只有一個(gè)公共點(diǎn),則這樣的直線有(    )
A.一條B.兩條C.三條D.四條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,下列三圖中的多邊形均為正多邊形,M、N是所在邊的中點(diǎn),雙曲線均以圖中的F1,F2為焦點(diǎn),設(shè)圖中的雙曲線的離心率分別為e1,e2,e3,則                                  (   )
A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率e = ,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為1-, 直線ly軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且
(1)求橢圓方程;
(2)若,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



(1)求動(dòng)圓圓心M的軌跡方程;
(2)過(guò)原點(diǎn)且傾斜角為的直線交(1)中軌跡P、Q兩點(diǎn),PQ的中垂線交軸N. 求三角形PQN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知點(diǎn)C的坐標(biāo)是(2,2),過(guò)點(diǎn)C的直線CA與x軸交于點(diǎn)A,過(guò)點(diǎn)C且與直線CA垂直的

直線CB與y軸交于點(diǎn)B.設(shè)點(diǎn)M是線段AB的中點(diǎn),求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在中,,AC、BC邊上的高分別為BD、AE,則以A、B為焦點(diǎn),且過(guò)D、E的橢圓與雙曲線的離心率的倒數(shù)和為      (   )
A.           B.     C.          D.

查看答案和解析>>

同步練習(xí)冊(cè)答案