等差數(shù)列{an}中,a1=1,d=1,則該數(shù)列的前n項(xiàng)和Sn=( 。
A、n
B、n(n+1)
C、n(n-1)
D、
n(n+1)
2
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的求和公式,把已知條件代入即可.
解答: 解:Sn=na1+
n(n-1)d
2
=n+
n(n-1)
2
=
n(n+1)
2
,
故選:D.
點(diǎn)評:本題主要考查了等差數(shù)列的求和公式的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
),下列結(jié)論中錯誤的是( 。
A、函數(shù)f(x)的最小正周期為π
B、由y=sin2x的圖象向左平移
π
12
個單位長度得到f(x)=sin(2x+
π
6
)的圖象
C、函數(shù)f(x)圖象關(guān)于x=
π
6
對稱
D、函數(shù)f(x)的一個增區(qū)間是[-
π
4
π
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2
sin(ωx+φ+
π
4
)(0<φ<
π
2
)的最小正周期為π,且f(-x)=f(x),則( 。
A、f(x)在(0,
π
2
)單調(diào)遞減
B、f(x)在(
π
4
,
4
)單調(diào)遞減
C、f(x)在(0,
π
2
)單調(diào)遞增
D、f(x)在(
π
4
,
4
)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)f(x)中,在(0,+∞)上是減函數(shù)的是( 。
A、f(x)=
1
x
-x
B、f(x)=x3
C、f(x)=lnx
D、f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓的極坐標(biāo)方程分別是ρ=2cosθ和ρ=4sinθ,兩個圓的圓心距離是( 。
A、2
B、
2
C、
5
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=n2+2n(n∈N*).
(1)寫出數(shù)列的前三項(xiàng)a1,a2,a3;
(2)求通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD被一平面所截,截面為平行四邊形EFGH,
求證:
(1)HG∥平面ACD;     
(2)CD∥EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項(xiàng)a1=2且公比q≠1的等比數(shù)列,a1,2a2,3a3依次成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn,若不等式
Sn-1
Sn+1-1
>λ對任意n∈N*恒成立,求實(shí)數(shù)λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=2.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)數(shù)列f(x)滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),(n∈N*)求證:數(shù)列{an}是等差數(shù)列;
(3)bn=
1
an-1
,Sn=
4n
2n+1
,Tn=b12+b22+b32+…+bn2,試比較Tn與Sn的大。

查看答案和解析>>

同步練習(xí)冊答案