已知sin(x+20°)=cos(x+10°)+cos(x-10°),則tanx=
3
3
分析:依題意,可求得tanx=
2cos10°-sin20°
cos20°
,再將右端分子中的cos10°轉(zhuǎn)化為cos(30°-20°),展開計(jì)算即可.
解答:解:∵sin(x+20°)=cos(x+10°)+cos(x-10°),
∴sinxcos20°+cosxsin20°=2cosxcos10°,
∴tanx=
2cos10°-sin20°
cos20°

=
2cos(30°-20°)-sin20°
cos20°

=
2cos30°cos20°+2sin30°sin20°-sin20°
cos20°

=2cos30°
=
3

故答案為:
3
點(diǎn)評(píng):本題考查三角函數(shù)的恒等變換及化簡求值,cos10°=cos(30°-20°)是關(guān)鍵,考查轉(zhuǎn)化思想與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)結(jié)論:
①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
②某企業(yè)有職工150人,其中高級(jí)職稱15人,中級(jí)職稱45人,一般職員90人,若用分層抽樣的方法抽出一個(gè)容量為30的樣本,則一般職員應(yīng)抽出20人;
③如果函數(shù)f(x)對(duì)任意的x∈R都滿足f(x)=-f(2+x),則函數(shù)f(x)是周期函數(shù);
④已知點(diǎn)(
π
4
,0)和直線x=
π
2
分別是函數(shù)y=sin(ωx+φ)(ω>0)圖象的一個(gè)對(duì)稱中心和一條對(duì)稱軸,則ω的最小值為2;其中正確結(jié)論的序號(hào)是
 
.(填上所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題本題包括A,B,C,D四小題,請(qǐng)選定其中 兩題 作答,每小題10分,共計(jì)20分,
解答時(shí)應(yīng)寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α1=
1
-1
,屬于特征值λ2=4的一個(gè)特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2
.點(diǎn)
P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.
D選修4-5:不等式選講
若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+sin
π
2
x,若有四個(gè)不同的正數(shù)xi滿足f(xi)=M(M為常數(shù)),xi<8,(i=1,2,3,4),則x1+x2+x3+x4的值為( 。
A、10B、14
C、12D、12或20

查看答案和解析>>

同步練習(xí)冊(cè)答案