如圖所示,曲線y2=-x2+1與x軸、y軸圍成一個(gè)區(qū)域A,直線x=1、直線y=1、x軸、y軸圍成一個(gè)正方形,向正方形中隨機(jī)地撒一把芝麻,利用計(jì)算機(jī)來(lái)模擬這個(gè)試驗(yàn),并統(tǒng)計(jì)出落在區(qū)域A內(nèi)的芝麻數(shù)與落在正方形中的芝麻數(shù).

答案:
解析:

  解:如下表,由計(jì)算機(jī)產(chǎn)生兩例0~1之間的隨機(jī)數(shù),它們分別表示隨機(jī)點(diǎn)(x,y)的坐標(biāo).如果一個(gè)點(diǎn)(x,y)滿足y2≤-x2+1,就表示這個(gè)點(diǎn)落在區(qū)域A內(nèi),在下表中最后一列相應(yīng)地就填上1,否則填0.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2007年海中附校高三數(shù)學(xué)綜合模擬測(cè)試二 題型:044

如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CN上,且滿足,,點(diǎn)N的軌跡為曲線E.

(Ⅰ)求曲線E的方程;

(Ⅱ)若點(diǎn)B1(x1,y1),B2(-1,y2),B3(x3,y3)在曲線E上,且成等差數(shù)列,求x1+x3的值;

(Ⅲ)若過(guò)定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課程高中數(shù)學(xué)疑難全解 題型:044

已知圓x2+y2=1及雙曲線x2-y2=1,直線y=kx+b從左向右順次交兩曲線于A,B,C,D四點(diǎn)(如圖所示).為使|AB|=|CD|,求k和b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省揚(yáng)州中學(xué)2008-2009學(xué)年度第一學(xué)期期中考試高二數(shù)學(xué)試卷 題型:044

如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足AM=2AP,NP⊥AM,點(diǎn)N的軌跡為曲線E.

(1)求曲線E的方程;

(2)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足,求直線l的方程;

(3)設(shè)曲線E的左右焦點(diǎn)為F1,F(xiàn)2,過(guò)F1的直線交曲線于Q,S兩點(diǎn),過(guò)F2的直線交曲線于R,T兩點(diǎn),且QS⊥RT,垂足為W;(ⅰ)設(shè)W(x0,y0),證明:;(ⅱ)求四邊形QRST的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年大連市高三第二次模擬試卷數(shù)學(xué)(理科) 題型:013

如圖所示,若向圓x2+y2=2內(nèi)隨機(jī)投一點(diǎn)(該點(diǎn)落在圓x2+y2=2內(nèi)任何一點(diǎn)是等可能的),則所投的點(diǎn)落在圓與y軸及曲線y=x2(x≥0)圍成的陰影圖形S內(nèi)部的概率是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案