已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,l),平行于OM的直線l交橢圓于A,B兩點(diǎn).
(Ⅰ)求橢圓的方程:
(Ⅱ)已知e=(t,0),是否對(duì)任意的正實(shí)數(shù)t,λ,都有e·p=0成立?請(qǐng)證明你的結(jié)論。
解:(Ⅰ)設(shè)橢圓方程為
,解得:,
∴橢圓的方程為。
(Ⅱ)若成立,
則向量與x軸垂直,
由菱形的幾何性質(zhì)知,∠AMB的平分線應(yīng)與x軸垂直,為此只需考查直線MA,MB傾斜角是否互補(bǔ)即可。
由已知,設(shè)直線l的方程為:y=x+m,
,∴,
設(shè)直線MA,MB的斜率分別為k1,k2,只需證明k1+k2=0即可,
設(shè),
,
可得,,




∴k1+k2=0,直線MA,MB的傾斜角互補(bǔ)。
故對(duì)任意的正實(shí)數(shù)t,λ,都有成立。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,且橢圓經(jīng)過圓C:x2+y2-4x+2
2
y=0的圓心C.
(1)求橢圓的方程;
(2)設(shè)直線l過橢圓的焦點(diǎn)且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=2x+1與該橢圓相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,左焦點(diǎn)為F1(-3,0),右準(zhǔn)線方程為x=
253

(1)求橢圓的標(biāo)準(zhǔn)方程和離心率e;
(2)設(shè)P為橢圓上第一象限的點(diǎn),F(xiàn)2為右焦點(diǎn),若△PF1F2為直角三角形,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),且橢圓過點(diǎn)P(3,2),焦點(diǎn)在坐標(biāo)軸上,長軸長是短軸長的3倍,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)F1(0,-2
2
),且離心率e滿足:
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓方程;
(2)直線y=x+1與橢圓交于點(diǎn)A,B.求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案