【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如下表:
作物產(chǎn)量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市場價格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.
【答案】
(1)解:設(shè)A表示事件“作物產(chǎn)量為300kg”,B表示事件“作物市場價格為6元/kg”,
則P(A)=0.5,P(B)=0.4,
∵利潤=產(chǎn)量×市場價格﹣成本,
∴X的所有值為:
500×10﹣1000=4000,500×6﹣1000=2000,
300×10﹣1000=2000,300×6﹣1000=800,
則P(X=4000)=P( )P( )=(1﹣0.5)×(1﹣0.4)=0.3,
P(X=2000)=P( )P(B)+P(A)P( )=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,
P(X=800)=P(A)P(B)=0.5×0.4=0.2,
則X的分布列為:
X | 4000 | 2000 | 800 |
P | 0.3 | 0.5 | 0.2 |
(2)解:設(shè)Ci表示事件“第i季利潤不少于2000元”(i=1,2,3),
則C1,C2,C3相互獨立,
由(1)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),
3季的利潤均不少于2000的概率為P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,
3季的利潤有2季不少于2000的概率為P( C2C3)+P(C1 C3)+P(C1C2 )=3×0.82×0.2=0.384,
綜上:這3季中至少有2季的利潤不少于2000元的概率為:0.512+0.384=0.896.
【解析】(1)分別求出對應(yīng)的概率,即可求X的分布列;(2)分別求出3季中有2季的利潤不少于2000元的概率和3季中利潤不少于2000元的概率,利用概率相加即可得到結(jié)論.
【考點精析】利用離散型隨機變量及其分布列對題目進(jìn)行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個平行班,每班50人,某教師采用、兩種不同的教學(xué)模式分別在甲、乙兩個班進(jìn)行教改實驗,為了了解教學(xué)效果,期末考試后,該教師分別從兩班中各隨機抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出莖葉圖如圖所示,記成績不低于90分為“成績優(yōu)秀”.
(1)在乙班的20個個體中,從不低于86分的成績中隨機抽取2人,求抽出的兩個人均“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表;能否在犯錯誤的概率不超過0.10的前提下認(rèn)為成績優(yōu)秀與教學(xué)模型有關(guān).
甲班() | 乙班() | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼t | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量y(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根據(jù)表中數(shù)據(jù),建立y關(guān)于t的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從,,,,這五個數(shù)字中任取個組成無重復(fù)數(shù)字的三位數(shù),當(dāng)三個數(shù)字中有和時,需排在的前面(不一定相鄰),這樣的三位數(shù)有( )個.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求gn(x)的表達(dá)式;
(2)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
(3)設(shè)n∈N+ , 比較g(1)+g(2)+…+g(n)與n﹣f(n)的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)(x∈R),對函數(shù)y=g(x)(x∈R),定義g(x)關(guān)于f(x)的“對稱函數(shù)”為函數(shù)y=h(x)(x∈R),y=h(x)滿足:對任意x∈R,兩個點(x,h(x)),(x,g(x))關(guān)于點(x,f(x))對稱.若h(x)是g(x)= 關(guān)于f(x)=3x+b的“對稱函數(shù)”,且h(x)>g(x)恒成立,則實數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(1)求M;
(2)當(dāng)x∈M∩N時,證明:x2f(x)+x[f(x)]2≤ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com