設(shè)函數(shù)f(x)=lnx+x2+ax
(1)若x=
12
時(shí),f(x)取得極值,求a的值;
(2)若f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍.
分析:(1)先求函數(shù)的導(dǎo)函數(shù),根據(jù)若x=
1
2
時(shí),f(x)取得極值得f′(
1
2
)=0,解之即可;
(2)f(x)在其定義域內(nèi)為增函數(shù)可轉(zhuǎn)化成只需在(0,+∞)內(nèi)有2x2+ax+1≥0恒成立,建立不等關(guān)系,解之即可;
解答:解:f′(x)=
1
x
+2x+a=
2x2+ax+1
x
,
(1)因?yàn)?x=
1
2
時(shí),f(x)取得極值,所以 f′(
1
2
)=0
,
即2+1+a=0,故a=-3.
(2)f(x)的定義域?yàn)椋?,+∞).
方程2x2+ax+1=0的判別式△=a2-8,
①當(dāng)△≤0,即 -2
2
≤a≤2
2
時(shí),2x2+ax+1≥0,f'(x)≥0在(0,+∞)內(nèi)恒成立,此時(shí)f(x)為增函數(shù).
②當(dāng)△>0,即 a<-2
2
a>2
2
時(shí),
要使f(x)在定義域(0,+∞)內(nèi)為增函數(shù),
只需在(0,+∞)內(nèi)有2x2+ax+1≥0即可,
設(shè)h(x)=2x2+ax+1,
h(0)=1>0
-
a
2×2
<0
得a>0,所以 a>2
2

由①②可知,若f(x)在其定義域內(nèi)為增函數(shù),a的取值范圍是 [-2
2
,+∞)
點(diǎn)評:本題以函數(shù)為載體.主要考查了了利用導(dǎo)數(shù)研究函數(shù)的極值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的證明,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2
(I)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值,并討論f(x)的單調(diào)性;
(II)若f(x)存在極值,求a的取值范圍,并證明所有極值之和大于ln
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)設(shè)函數(shù)f(x)=ln(1+x)-
2x
x+2
,證明:當(dāng)x>0時(shí),f(x)>0;
(Ⅱ)從編號1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽得的20個(gè)號碼互不相同的概率為P.證明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請你寫出一個(gè)一元二次不等式,使它的解集為A∩B,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解關(guān)于x不等式f(e
x
-
3
2
)<ln2+
1
4
;
(2)證明:關(guān)于x的方程2x2+2ax+1=0有兩相異解,且f(m)和f(n)分別是函數(shù)f(x)的極小值和極大值(m,n為該方程兩根,且m>n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x+a)+2x2
(1)若當(dāng)x=-1時(shí),f(x)取得極值,求a的值;
(2)在(1)的條件下,方程ln(x+a)+2x2-m=0恰好有三個(gè)零點(diǎn),求m的取值范圍;
(3)當(dāng)0<a<1時(shí),解不等式f(2x-1)<lna.

查看答案和解析>>

同步練習(xí)冊答案