已知數(shù)列{an}的前n項(xiàng)和為Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求該數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè) 數(shù)列滿足: 
(1)求證:數(shù)列是等比數(shù)列(要指出首項(xiàng)與公比);
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)C1、C2、…、Cn、…是坐標(biāo)平面上的一列圓,它們的圓心都在軸的正半軸上,且都與直線y=x相切,對(duì)每一個(gè)正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.

(1)證明:{rn}為等比數(shù)列;
(2)設(shè)r1=1,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,設(shè)
(1)證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)若為數(shù)列的前項(xiàng)和,求不超過的最大的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn,記數(shù)列{cn}的前n項(xiàng)和Tn.若對(duì)?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,其前n項(xiàng)和為Sn,點(diǎn)(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn,證明:c1c2c3+…+cn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列滿足, 且,其中.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 設(shè)數(shù)列滿足,是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由。
(3) 令,記數(shù)列的前項(xiàng)和為,其中,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為等比數(shù)列,為其前項(xiàng)和,已知.
(1)求的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等比數(shù)列中,,
(1)和公比;
(2)前6項(xiàng)的和

查看答案和解析>>

同步練習(xí)冊(cè)答案