設(shè)An為(1+x)n+1的展開(kāi)式中含xn-1項(xiàng)的系數(shù),Bn為(1+x)n-1的展開(kāi)式中二項(xiàng)式系數(shù)的和,則能使An≥Bn成立的n的最大值是_________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:上海市長(zhǎng)寧區(qū)2012屆高三上學(xué)期期末質(zhì)量抽測(cè)數(shù)學(xué)文科試題 題型:022

(理)設(shè)An為(1+x)n+1的展開(kāi)式中含xn-1項(xiàng)的系數(shù),Bn為(1+x)n-1的展開(kāi)式中二項(xiàng)式系數(shù)的和,n∈N*,則能使An≥Bn成立的n的最大值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南通市如皋市白蒲高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切n∈N*,點(diǎn)(n,)都在函數(shù)f(x)=x+的圖象上.
(1)計(jì)算a1,a2,a3,并歸納出數(shù)列{an}的通項(xiàng)公式;
(2)將數(shù)列{an}依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)設(shè)An為數(shù)列的前n項(xiàng)積,若不等式An<f(a)-對(duì)一切n∈N*都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市虹口區(qū)北郊高級(jí)中學(xué)數(shù)學(xué)押題試卷(文理合卷)(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切n∈N*,點(diǎn)(n,)都在函數(shù)f(x)=x+的圖象上.
(1)計(jì)算a1,a2,a3,并歸納出數(shù)列{an}的通項(xiàng)公式;
(2)將數(shù)列{an}依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來(lái)括號(hào)的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)設(shè)An為數(shù)列的前n項(xiàng)積,若不等式An<f(a)-對(duì)一切n∈N*都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省衡陽(yáng)市高三聯(lián)考數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切n∈N*,點(diǎn)(n,)都在函數(shù)f(x)=x+的圖象上.
(1)求a1,a2,a3的值,猜想an的表達(dá)式,并證明你的猜想.
(2)設(shè)An為數(shù)列{}的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式An對(duì)一切n∈N*都成立?若存在,求出a的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案