若f′(x0)=-3,則
lim
h→0
f(x0+h)-f(x0-3h)
h
=( 。
A、-3B、-12C、-9D、-6
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)
lim
h→0
f(x0+h)-f(x0-3h)
h
=
lim
h→0
[4•
f(x0+4m)-f(x0)
4m
]=4
lim
m→0
f(x0+4m)-f(x0)
4m
)=4f′(x0),利用條件求得結(jié)果.
解答: 解:∵f′(x0)=-3,則
lim
h→0
f(x0+h)-f(x0-3h)
h
=
lim
h→0
[4•
f(x0+4m)-f(x0)
4m
]=4
lim
m→0
f(x0+4m)-f(x0)
4m
)=4f′(x0)=4×(-3)=-12,
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)在某一點(diǎn)的導(dǎo)數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)ABCD、ABEF都是邊長(zhǎng)為1的正方形,F(xiàn)A⊥平面ABCD,則異面直線AC與BF所成的角為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出命題:①y=sinx是增函數(shù);②y=arcsinx-arctanx是奇函數(shù);③y=arccos|x|為增函數(shù);④y=
π
2
-arccosx為奇函數(shù).其中正確的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)按下列規(guī)律排列,則第21行從左向右的第5個(gè)數(shù)為( 。
1
3 5 7
9 11 13 15 17
19 21 23 25 27 29 31
A、811B、809
C、807D、805

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2-5x+4<0的解集為( 。
A、(-∞,-
4
3
)∪(
1
2
,+∞)
B、(-
4
3
,
1
2
C、(-∞,-
1
2
)∪(
4
3
,+∞)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(sin
π
8
+cos
π
8
2的值為( 。
A、1-
2
2
B、1+
2
2
C、
2
-1
D、1+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小李練習(xí)射擊,每次擊中目標(biāo)的概率為
1
3
,用ξ表示小李射擊5次擊中目標(biāo)的次數(shù),則ξ的均值Eξ與方差Dξ的值分別是( 。
A、
5
3
,
9
10
B、
5
3
,
5
3
C、
5
3
,
10
9
D、
5
3
,
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2sinα-cosα
sinα+2cosα
=
3
4

(1)求tanα的值;
(2)求sin2α+sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求由拋物線y2=4x與直線y=x-3所圍成的平面圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案