11.函數(shù)f(x)=lgcosx的單調(diào)遞增區(qū)間為(2kπ-$\frac{π}{2}$,2kπ),k∈Z.

分析 令t=cosx,則f(x)=g(t)=lgt,故本題即求t>0時(shí),函數(shù)t的增區(qū)間,再利用余弦函數(shù)的圖象可得結(jié)論.

解答 解:令t=cosx,則f(x)=g(t)=lgt,故本題即求t>0時(shí),函數(shù)t的增區(qū)間.
再利用余弦函數(shù)的圖象可得t>0時(shí),函數(shù)t的增區(qū)間為 $(-\frac{π}{2}+2kπ,2kπ](k∈Z)$,
故答案為:(2kπ-$\frac{π}{2}$,2kπ),k∈Z.

點(diǎn)評 本題主要考查復(fù)合函數(shù)的單調(diào)性,余弦函數(shù)、對數(shù)函數(shù)的圖象性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正數(shù)a,b滿足a+b=2,則$\frac{1}{a+1}+\frac{4}{b+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果二面角α-L-β的大小是60°,線段AB在α內(nèi),AB與L所成的角為60°,則AB與平面β所成角的正切值是$\frac{{3\sqrt{7}}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3+a5+a7=$\frac{π}{4}$則sinS9的值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow m=({sin(\frac{π}{2}-x),-\sqrt{3}cosx})$,$\overrightarrow n=({sinx,cosx})$,f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求f(x)的最大值和對稱軸;
(2)討論f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.集合{1,2,3}的子集個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.臨近年終,鄭州一蔬菜加工點(diǎn)分析市場發(fā)現(xiàn):當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本y(萬元)可以看成月產(chǎn)量x(噸)的二次函數(shù),當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元,當(dāng)月產(chǎn)量為15萬噸時(shí),月總成本最低且為17.5萬元.
(1)寫出月總成本y(萬元)關(guān)于月產(chǎn)量x(噸)的函數(shù)關(guān)系;
(2)已知該產(chǎn)品銷售價(jià)位每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲得最大利潤,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x.
(1)求f(x)的解析式,并畫出的f(x)圖象;
(2)設(shè)g(x)=f(x)-k,利用圖象求:當(dāng)實(shí)數(shù)k為何值時(shí),函數(shù)g(x)有三個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知全集U={x∈N|1≤x≤10},A={1,2,3,5,8},B={1,3,5,7,9}.
(Ⅰ)求A∩B;               
(Ⅱ)求(∁UA)∩(∁UB).

查看答案和解析>>

同步練習(xí)冊答案