【題目】已知向量 ,函數(shù) ,若函數(shù)f(x)圖象的兩個(gè)相鄰的對(duì)稱(chēng)軸間的距離為 .
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若△ABC滿(mǎn)足f(A)=1,a=3,BC邊上的中線長(zhǎng)為3,求△ABC的面積.
【答案】
(1)解:向量 ,
則函數(shù)
=2 sinωxcosωx+2cos2ωx﹣1
= sin2ωx+cos2ωx
=2sin(2ωx+ ),
由函數(shù)f(x)圖象的兩個(gè)相鄰的對(duì)稱(chēng)軸間的距離為 ,
T=π= ,解得ω=1;
∴f(x)=2sin(2x+ ),
令﹣ +2kπ +2kπ,k∈Z,
解得﹣ +kπ≤x≤ +kπ,k∈Z,
∴函數(shù)f(x)的單調(diào)增區(qū)間為[﹣ +kπ, +kπ],k∈Z
(2)解:△ABC滿(mǎn)足f(A)=1,
∴2sin(2A+ )=1,
由0<A<π,得 <2A+ < ,
∴2A+ = ,解得A= ;
由a=3,得| |=| ﹣ |=a=3①,
由BC邊上的中線長(zhǎng)為3,得| + |=6②;
由①②組成方程組,解得 = ,
∴| || |= ,
∴△ABC的面積為S= | || |sin =
【解析】(1)根據(jù)平面向量數(shù)量積的運(yùn)算和三角恒等變換化f(x)為正弦型函數(shù);根據(jù)對(duì)稱(chēng)軸求出周期和ω,寫(xiě)出解析式,求出函數(shù)f(x)的單調(diào)增區(qū)間;(2)根據(jù)f(A)=1求出A的值,再由a=| |=3,BC邊上的中線長(zhǎng)得| + |=6;求出 的值,從而求出| || |的值,即可求出△ABC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿(mǎn)足不等式組 ,若目標(biāo)函數(shù)z=kx+y僅在點(diǎn)(1,1)處取得最小值,則實(shí)數(shù)k的取值范圍是 ( )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在六面體ABCD﹣A1B1C1D1中,M,N分別是棱A1B1 , B1C1的中點(diǎn),平面ABCD⊥平面A1B1BA,平面ABCD平面B1BCC1 .
(1)證明:BB1⊥平面ABCD;
(2)已知六面體ABCD﹣A1B1C1D1的棱長(zhǎng)均為 ,cos∠BAD= ,設(shè)平面BMN與平面AB1D1相交所成二面角的大小為θ求cosθ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點(diǎn). (Ⅰ)求證:BG∥面ADEF;
(Ⅱ)求證:面DBG⊥面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB,b=2,則△ABC面積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李冶(1192﹣1279),真定欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩(shī)人、晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問(wèn)題:求圓的直徑,正方形的邊長(zhǎng)等,其中一問(wèn):現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長(zhǎng)分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)( )
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在五棱錐P﹣ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點(diǎn),點(diǎn)P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC= ,側(cè)棱PA與底面ABCDE所成角為45°,S△PBE= ,點(diǎn)M在側(cè)棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com