已知函數(shù)f(x)=2cosxsin(x+
π
3
)-
3
2

(1)求函數(shù)f(x)的最小正周期T;
(2)若△ABC的三邊a,b,c滿足b2=ac,且邊b所對角為B,試求cosB的取值范圍,并確定此時f(B)的最大值.
分析:(1)先根據(jù)兩角和與差的正弦公式進行化簡,再由最小正周期T=
|ω|
可得到答案.
(2)先根據(jù)余弦定理表示出cosB,再將b2=ac代入運用基本不等式的內(nèi)容可確定cosB的范圍,進入可確定B的范圍,然后將B代入函數(shù)f(x)中,根據(jù)B的范圍求出f(B)的最大值.
解答:解:(1)f(x)=2cosx•sin(x+
π
3
)-
3
2

=2cosx(sinxcos
π
3
+cosxsin
π
3
)-
3
2

=2cosx(
1
2
sinx+
3
2
cosx)-
3
2

=sinxcosx+
3
•cos2x-
3
2

=
1
2
sin2x+
3
1+cos2x
2
-
3
2

=
1
2
sin2x+
3
2
cos2x
=sin(2x+
π
3
).
∴T=
|ω|
=
2
=π.
(2)由余弦定理cosB=
a2+c2-b2
2ac
得,cosB=
a2+c2-ac
2ac

=
a2+c2
2ac
-
1
2
2ac
2ac
-
1
2
=
1
2
,∴
1
2
≤cosB<1,
而0<B<π,∴0<B≤
π
3
.函數(shù)f(B)=sin(2B+
π
3
),
π
3
<2B+
π
3
≤π,當2B+
π
3
=
π
2
,
即B=
π
12
時,f(B)max=1.
點評:本題主要考查兩角和與差的正弦公式的應用和余弦定理的表達式的應用.考查基礎(chǔ)知識的綜合應用.三角函數(shù)的內(nèi)容公式比較多,不容易記,一定要強化記憶并能熟練應用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案