2.設(shè)點(diǎn)(a,b)是區(qū)間$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$內(nèi)的隨機(jī)點(diǎn),函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上的增函數(shù)的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 首先畫(huà)出可行域,求出面積,計(jì)算滿足函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上的增函數(shù)的a,b滿足區(qū)域的面積,利用幾何概型公式得到所求.

解答 解:點(diǎn)(a,b)對(duì)應(yīng)的區(qū)域?yàn)檫呴L(zhǎng)為4的等腰直角三角形,
面積為8,而使得
函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上的增函數(shù)的a,b滿足的條件$\left\{\begin{array}{l}{a>0}\\{\frac{4b}{2a}≤1}\end{array}\right.$,對(duì)應(yīng)區(qū)域面積為$\frac{1}{2}×4×\frac{4}{3}=\frac{8}{3}$,
由幾何概型的公式得到所求概率為:$\frac{\frac{8}{3}}{8}=\frac{1}{3}$;
故選A.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問(wèn)題與幾何概型的綜合考查;正確畫(huà)出區(qū)域,利用面積比求概率是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,已知三棱柱ABC-A1B1C1中,D是BC的中點(diǎn),D1是B1C1的中點(diǎn),設(shè)平面A1D1B∩平面ABC=l1,平面ADC1∩平面A1B1C1=l2,
(1)求證:l1∥l2;
(2)若此三棱柱是各棱長(zhǎng)都相等且側(cè)棱垂直于底面,求A1B與AC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.給出下列命題:
①橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1與$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)有相等的焦距;
②“直線與雙曲線相切”是“直線與雙曲線只有一個(gè)公共點(diǎn)”的充分不必要條件;
③已知P是曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點(diǎn),坐標(biāo)原點(diǎn)為O,直線PO的傾斜角為$\frac{π}{4}$,則P點(diǎn)坐標(biāo)是($\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$);
④直線y=mx+1-m與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的位置關(guān)系隨著m的變化而變化;
⑤雙曲線$\frac{{x}^{2}}{{a}^{2}}$$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,若雙曲線上存在一點(diǎn)P,滿足|PF1|=3|PF2|,則雙曲線離心率的取值范圍(1,2].
其中正確命題的所有序號(hào)有①②⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.直線y=x被圓x2+(y-2)2=4截得的弦長(zhǎng)為(  )
A.3B.3$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.為了了解中學(xué)生的身高情況,對(duì)某中學(xué)同齡的若干女生身高進(jìn)行測(cè)量,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖如圖所示,已知圖中從左到右五個(gè)小組的頻率分別為0.017,0.050,0.100,0.133,0.300,第三小組的頻數(shù)為6.
(Ⅰ)參加這次測(cè)試的學(xué)生數(shù)是多少?
(Ⅱ)如果本次測(cè)試身高在157cm以上(包括157cm)的為良好,試估計(jì)該校女生身高良好率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,滿足(2b-a)cosC=ccosA.
(1)求角C的大。
(2)若c=2,且△ABC的面積為$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.${({x^2}-1)^2}{({x^3}+\frac{1}{x})^4}$的展開(kāi)式中x8的系數(shù)為(  )
A.24B.20C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2ex-x3ex
(1)求函數(shù)f(x)在(0,f(0))處的切線方程;
(2)證明:當(dāng)x∈(0,1)時(shí),f(x)>$\frac{lnx}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知橢圓$\frac{x^2}{64}$+$\frac{y^2}{28}=1$ 上一點(diǎn)P到左焦點(diǎn)的距離為4,求P點(diǎn)到右準(zhǔn)線的距離16.

查看答案和解析>>

同步練習(xí)冊(cè)答案