19.求下列函數(shù)的導(dǎo)數(shù).
(1)y=$\frac{{x}^{2}}{(2x+1)^{3}}$
(2)y=e-xsin2x.

分析 根據(jù)導(dǎo)數(shù)的運算法則和符合函數(shù)的求導(dǎo)法則求導(dǎo)即可.

解答 解:(1)y′=$\frac{2x•(2x+1)^{3}-{x}^{2}•3(2x+1)^{2}•2}{(2x+1)^{6}}$=$\frac{2x-2{x}^{2}}{(2x+1)^{4}}$;
 (2)y′=-e-xsin2x+2e-xcos2x=e-x(2cos2x-sin2x).

點評 本題考查了導(dǎo)數(shù)的運算法則和符合函數(shù)的求導(dǎo)法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.復(fù)數(shù)$\frac{1}{1+2i}$的虛部與實部的和是$-\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線f(x)=ln(2x+1)在點(0,f(0))處的切線方程為( 。
A.y=xB.y=x+1C.y=2xD.y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若函數(shù)f(x)=ax3-bx+4.當(dāng)x=2時,函數(shù)f(x)取得極值$-\frac{4}{3}$.
(1)求函數(shù)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-3,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{1-{x}^{2}-4x,x≤0}\end{array}\right.$若函數(shù)y=f(x)-a只有兩個零點,則實數(shù)a的取值范圍是[1,2)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)$\left\{\begin{array}{l}{lo{g}_{4}x+x-3(x>0)}\\{x-(\frac{1}{4})^{x}+3(x≤0)}\end{array}\right.$若f(x)的兩個零點分別為x1,x2,則|x1-x2|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線f(x)=x3-3x及曲線y=f(x)上一點P(1,-2).
(I) 求曲線y=f(x)在P點處的切線方程;
(Ⅱ)求曲線y=f(x)過P點的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知p:$\frac{1}{x-2}$<1,q:|x-a|<1,若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.5人站成一排,甲、乙兩人相鄰的不同站法有(  )
A.120種B.72種C.48種D.24種

查看答案和解析>>

同步練習(xí)冊答案