求證:對于任意的正整數(shù)n,(2+)n必可表示成的形式,其中s∈N*

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意的n∈N*,總有an,Sn,an2成等差數(shù)列.
(1)求a1;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列{bn}的前n項和為Tn,且bn=
1an2
,求證:對任意正整n,總有Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意的n∈N*,總有an,Sn,an2成等差數(shù)列.
(1)求a1;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列{bn}的前n項和為Tn,且bn=
1
an2
,求證:對任意正整n,總有Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省珠海市高三(上)開學(xué)摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意的n∈N*,總有an,Sn,an2成等差數(shù)列.
(1)求a1;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列{bn}的前n項和為Tn,且bn=,求證:對任意正整n,總有Tn<2.

查看答案和解析>>

同步練習(xí)冊答案