已知斜率為的直線(xiàn)與橢圓交于不同的兩點(diǎn),且這兩個(gè)交點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則此橢圓的離心率是(    )

A.         B.          C.          D.      

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線(xiàn)M:y2=4mx(m>0)的準(zhǔn)線(xiàn)與x軸交于F1,橢圓C與拋物線(xiàn)M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線(xiàn)l過(guò)焦點(diǎn)F2,與拋物線(xiàn)M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線(xiàn)l的方程;
(3)由拋物線(xiàn)弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線(xiàn)叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線(xiàn)的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的

  左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線(xiàn)的頂點(diǎn)是該橢

  圓的焦點(diǎn),設(shè)為該雙曲線(xiàn)上異于頂點(diǎn)的任一點(diǎn),直線(xiàn)與橢圓的交點(diǎn)

  分別 為

   (Ⅰ)求橢圓和雙曲線(xiàn)的標(biāo)準(zhǔn)方程; 

   (Ⅱ)設(shè)直線(xiàn)、的斜率分別為、,證明;

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

                                                             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二下學(xué)期一調(diào)考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題12分)已知圓C的圓心為C(m,0),(m<3),半徑為,圓C與橢圓E:  有一個(gè)公共點(diǎn)A(3,1),分別是橢圓的左、右焦點(diǎn);

(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線(xiàn)與圓C能否相切,若能,求出橢

圓E和直線(xiàn)的方程,若不能,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線(xiàn)M:y2=4mx(m>0)的準(zhǔn)線(xiàn)與x軸交于F1,橢圓C與拋物線(xiàn)M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線(xiàn)l過(guò)焦點(diǎn)F2,與拋物線(xiàn)M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線(xiàn)l的方程;
(3)由拋物線(xiàn)弧y2=4mx和橢圓弧
(m>0)合成的曲線(xiàn)叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線(xiàn)的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線(xiàn)M:y2=4mx(m>0)的準(zhǔn)線(xiàn)與x軸交于F1,橢圓C與拋物線(xiàn)M的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線(xiàn)l過(guò)焦點(diǎn)F2,與拋物線(xiàn)M交于A、B兩點(diǎn),若弦長(zhǎng)|AB|等于△PF1F2的周長(zhǎng),求直線(xiàn)l的方程;
(3)由拋物線(xiàn)弧y2=4mx和橢圓弧
(m>0)合成的曲線(xiàn)叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線(xiàn)的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案